美文网首页
Regularization

Regularization

作者: 叨逼叨小马甲 | 来源:发表于2017-08-29 22:48 被阅读0次

regularization的几种方法(防止overfit):

1. add term to loss

2. dropout

3. A common pattern

4. data augmentation

即指对input图像进行转换,比如flip, scale, crop等

总结:

相关文章

  • regularization

    regularization 监督机器学习问题无非就是“minimizeyour error while regu...

  • Regularization

    regularization的几种方法(防止overfit): 1. add term to loss 2. dr...

  • Regularization

    overfitting 如果特征过多,但是训练集不够时,很有可能会出现overfitting 解决overfitt...

  • lecture 3

    Regularization: Model should be "simple", so it works on ...

  • DS Q&A

    What is regularization? The differences between Lasso vs ...

  • DROPOUT

    important technique for regularization 流程 Imagine that yo...

  • [NN] Regularization Summary

    Dropout: Dropout is a regularization technique. You only ...

  • regularization strength in Logi

    Q: What is the inverse of regularization strength in Logi...

  • “数据融合”总结2

    Feature fusion with covariance matrix regularization in f...

  • Elastic-net 导读

    Regularization and Variable Selection via the Elastic Net...

网友评论

      本文标题:Regularization

      本文链接:https://www.haomeiwen.com/subject/aavadxtx.html