美文网首页
Detection in Crowded Scenes

Detection in Crowded Scenes

作者: 小松qxs | 来源:发表于2020-05-19 22:15 被阅读0次
titile Detection in Crowded Scenes: One Proposal, Multiple Predictions
url https://arxiv.org/pdf/2003.09163.pdf
动机 提高密集场景人体检测的效果,simple and almost cost-free。
内容 贡献点:
1、每个proposal预测a set of instance。
2、EMD loss学习instance set prediction。
3、后处理Set NMS。
4、 refinement module (RM),解决潜在的FP(可选)。
现有方法解决crowd问题:
1、NMS:soft NMS、softer NMS、different NMS thresholds for different bounding boxes、adaptive-NMS。
2、Loss functions for crowded detection: Aggregation Loss(proposals更贴近gt) 、Repulsion Loss(proposal与多个gt overlap,引入惩罚项),这些loss对crowded场景有帮助但NMS仍然限制crowd场景。
3、Re-scoring: RelationNet(不用NMS在coco也有好的效果,但是crowdhuman效果不好,different predictions from very close proposals, so their features and relations are also very similar)、part-based detectors 本文方法:Multiple Instance Prediction
一个proposal匹配多个gt 1、Instance set prediction:c:class label with confidence、l:relative coordinates
2、EMD loss(实验中K=2): 3、Set NMS:we check whether the two box come from the same proposal; if yes, we skip the suppression
4、Refinement module:一个proposal匹配多个gt,有更多的predictions,有产生更多FP风险,
5、Discussion: relation to previous methods:
(1)Double-person detector models person pairs in the DPM。
(2)MultiBox 在image patch预测所有instances; YOLO v1/v2预测all instances centered at a certain location, 它们不是proposal-based。
(3) https://arxiv.org/pdf/1506.04878.pdf用LSTM去decode图像中每个grid的instance boxes,和EMD loss相似,用Hungarian Loss for multiple instance supervision,后处理merge the predictions produced by adjacent grids,该方法没有用到proposals,很难检测various sizes/shapes objects(pedestrians or general objects),LSTM复杂, 整合到framework比较难。
实验 Evaluation metrics:
1、 Averaged Precision (AP)。
2、MR−2:log-average Miss Rate on False Positive Per Image (FPPI) in [10−2,100],对FP敏感,尤其高分的FP。
3、Jaccard Index (JI):counting ability of a detector。

Detailed Settings:
resnet50+FPN+ROIAlign,NMS=0.5。

Experiment on CrowdHuman:
Main results and ablation study: 1、没有MR时,AP和JI均增长较多,说明更多的正样本检测到,MR也增长说明没有引入更多的FP
2、加入RM,AP和JI略增长,MR增长多,说明有减少FP作用。

Comparisons with various NMS strategies: 1、NMS 阈值增大(0.5->0.6)recall多,AP增大,但MR指标变差,召回FP多。
2、Soft-NMS:增加AP,JI和MR不变。

Comparisons with previous works: GossipNet and RelationNet – which are representative works categorized into advanced NMS and re-scoring approaches respectively

Analysis on recalls:
Experiments on CityPersons Qualitative results:
Experiments on COCO
coco crowdedness比较少,coco数据集效果可以说明以下两点:
1) whether our method generalizes well to multi-class detection problems;
2) whether the proposed approach is robust to different crowdedness, especially to isolated instances.
思考

相关文章

网友评论

      本文标题:Detection in Crowded Scenes

      本文链接:https://www.haomeiwen.com/subject/akafnhtx.html