PCA实现高维数据可视化
#建立工程,导入sklearn相关工具包
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
#加载数据并进行降维
data = load_iris()
y = data.target
X = data.data
pca = PCA(n_components=2)
reduced_X = pca.fit_transform(X)
#按类别对降维后的数据进行保存
red_x,red_y = [],[]
blue_x,blue_y = [],[]
green_x,green_y = [],[]
for i in range(len(reduced_X)):
if y[i] == 0:
red_x.append(reduced_X[i][0])
red_y.append(reduced_X[i][1])
elif y[i] == 1:
blue_x.append(reduced_X[i][0])
blue_y.append(reduced_X[i][1])
else:
green_x.append(reduced_X[i][0])
green_y.append(reduced_X[i][1])
#降维后数据点的可视化
plt.scatter(red_x,red_y,c='r',marker='x')
plt.scatter(blue_x,blue_y,c='b',marker='D')
plt.scatter(green_x,green_y,c='g',marker='.')
plt.show()
NMF人脸数据特征提取
#建立工程,导入sklearn相关工具包
import matplotlib.pyplot as plt
from sklearn import decomposition
from sklearn import datasets
from sklearn.datasets import fetch_olivetti_faces
from numpy.random import RandomState
#设置基本参数并加载数据
n_row, n_col = 2,3
n_components = n_row*n_col
image_shape = (64,64)
dataset = fetch_olivetti_faces(shuffle=True,random_state=RandomState(0))
faces = dataset.data
#设置图像的展示方式
def plot_gallery(title,images,n_col=n_col,n_row=n_row):
plt.figure(figsize=(2.*n_col,2.26*n_row))
plt.suptitle(title,size=16)
for i,comp in enumerate(images):
plt.subplot(n_row,n_col,i+1)
vmax = max(comp.max(),comp.min())
plt.imshow(comp.reshape(image_shape),cmap=plt.cm.gray,interpolation='nearest',vmin=-vmax,vmax=vmax)
plt.xticks(())
plt.yticks(())
plt.subplots_adjust(0.01,0.05,0.99,0.93,0.04,0.)
plot_gallery("First centered Olivetti faces", faces[:n_components])
#创建特征提取的对象NMF,使用PCA作为对比
estimators = [
('Eigenfaces - PCA using randomized SVD',
decomposition.PCA(n_components=6,whiten=True)),
('Non-negative components - NMF',
decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3))
]
#降维后数据点的可视化
for name, estimator in estimators:
print("Extracting the top %d %s..." % (n_components, name))
print(faces.shape)
estimator.fit(faces)
components_ = estimator.components_
plot_gallery(name, components_[:n_components])
plt.show()
网友评论