美文网首页
多任务-进程

多任务-进程

作者: 潇潇雨歇_安然 | 来源:发表于2018-05-17 10:43 被阅读0次

一、进程及状态

1. 进程

程序:比如电脑安装了很多程序,又比如我们编写一个xxx.py程序,它们静静的保存在硬盘中,所以程序是一个静态的概念。
进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单位。
不仅可以通过线程完成多任务,进程也是可以的。

2. 进程的状态

工作中,任务数往往大于cpu的核数,即一定有一些任务正在执行,而另外一些任务在等待cpu进行执行,因此导致了有了不同的状态。
就绪态:运行的条件都已经满足,正在等在cpu执行
执行态:cpu正在执行其功能
等待态:等待某些条件满足,例如一个程序sleep了,此时就处于等待态,红绿灯,等待消息回复,等待同步锁 等都是处于等待态

二、进程的创建-multiprocessing

multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来创建进程对象。

1.示例如下:

from multiprocessing import Process
import time

def run_proc():
  """子进程要执行的代码"""
  while True:
    print("----2----")
    time.sleep(1)


if  __name__  == '__main__':
    p = Process(target=run_proc)
    p.start()
    while True:
        print("----1----")
        time.sleep(1)
创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动。

#### 2. 进程pid
可以通过os模块的getpid()方法获取当前进程的id,通过getppid()获取当前进程父进程的id。
示例如下:
import multiprocessing,os,time

def run_proc():
    # os.getpid() 取得当前进程的id
    # os.getppid() :取得当前进程的父进程的id
    while True:
        time.sleep(1)
        print("--run_proc--子进程的父进程的id=%d  子进程的id= %d" % (os.getppid(), os.getpid()))

if  __name__ == "__main__":
    print("--main--主进程的父进程id=%d   主进程的id= %d" % (os.getppid(), os.getpid()))

    # 在主进程中创建一个子进程p1   ,p1的父进程就是主进程
    p1 = multiprocessing.Process(target=run_proc)
    p1.start()

3. Process语法结构如下:

Process([group [, target [, name [, args [, kwargs]]]]]):

target:如果传递了函数的引用,可以认为这个子进程就执行这里的代码
args:给target指定的函数传递的参数,以元组的方式传递
kwargs:给target指定的函数传递命名参数
name:给进程设定一个名字,可以不设定
group:指定进程组,大多数情况下用不到

Process创建的实例对象的常用方法:

start():启动子进程实例(创建子进程)
is_alive():判断进程子进程是否还在活着
join([timeout]):是否等待子进程执行结束,或等待多少秒
terminate():不管任务是否完成,立即终止子进程
Process创建的实例对象的常用属性:

name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
pid:当前进程的pid(进程号)

4. 给子进程指定的函数传递参数

# -*- coding:utf-8 -*-

from multiprocessing import Process
import os,time

def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        time.sleep(0.2)

if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

运行结果:

子进程运行中,name= test,age=18 ,pid=45097...
{'m': 20}
子进程运行中,name= test,age=18 ,pid=45097...
{'m': 20}
子进程运行中,name= test,age=18 ,pid=45097...
{'m': 20}
子进程运行中,name= test,age=18 ,pid=45097...
{'m': 20}
子进程运行中,name= test,age=18 ,pid=45097...
{'m': 20}

5. 进程间不同享全局变量

# -*- coding:utf-8 -*-

from multiprocessing import Process
import os,time

nums = [11, 22]

def work1():
    """子进程要执行的代码"""
    print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
    for i in range(3):
        nums.append(i)
        time.sleep(1)
        print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))

def work2():
    """子进程要执行的代码"""
    print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))

if __name__ == '__main__':
    p1 = Process(target=work1)
    p1.start()
    p1.join()#阻塞主进程,即等待p1进程执行完毕再执行后续的代码。

    p2 = Process(target=work2)
    p2.start()

运行结果:
in process1 pid=11349 ,nums=[11, 22]
in process1 pid=11349 ,nums=[11, 22, 0]
in process1 pid=11349 ,nums=[11, 22, 0, 1]
in process1 pid=11349 ,nums=[11, 22, 0, 1, 2]
in process2 pid=11350 ,nums=[11, 22]

从运行结果可以看出,进程间并没有共享全局变量nums。

三、进程、线程对比

1.功能:

进程,能够完成多任务,比如运行的QQ再单独开一个进程接收推送的消息
线程,能够完成多任务,比如运行的QQ开多个线程来发送消息、接收文件、视频聊天等多个任务

2.定义的不同

进程是操作系统进行资源分配和调度的一个基本单位.
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.

3.区别

一个程序至少有一个进程,一个进程至少有一个线程.
线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
线程不能够独立执行,必须依存在进程中

4.优缺点

线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。

四、进程间通信-Queue

Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:

#coding=utf-8

from multiprocessing import Queue

q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1") 
q.put("消息2")
print(q.full())  #False
q.put("消息3")
print(q.full()) #True

#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4",True,2)
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")

#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

运行结果:
False
True
消息列队已满,现有消息数量:3
消息列队已满,现有消息数量:3
消息1
消息2
消息3

说明:

初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

Queue.qsize():返回当前队列包含的消息数量;

Queue.empty():如果队列为空,返回True,反之False ;

Queue.full():如果队列满了,返回True,反之False;

Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;

2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;

Queue.get_nowait():相当Queue.get(False);

Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;

2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;

Queue.put_nowait(item):相当Queue.put(item, False);

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            break

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    print('')
    print('所有数据都写入并且读完')

五、进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态生成多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

# -*- coding:utf-8 -*-

from multiprocessing import Pool
import os, time, random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))

po = Pool(3)  # 定义一个进程池,最大进程数3
for i in range(0,10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

print("----start----")
po.close()  # 关闭进程池,关闭后po不再接收新的请求
po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行结果:
----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----

multiprocessing.Pool常用函数解析:

apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
close():关闭Pool,使其不再接受新的任务;
terminate():不管任务是否完成,立即终止;
join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

# -*- coding:utf-8 -*-

# 修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random

def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get())

def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "itcast":
        q.put(i)

if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

运行结果:

(11095) start
writer启动(11097),父进程为(11095)
reader启动(11098),父进程为(11095)
reader从Queue获取到消息:i
reader从Queue获取到消息:t
reader从Queue获取到消息:c
reader从Queue获取到消息:a
reader从Queue获取到消息:s
reader从Queue获取到消息:t
(11095) End

相关文章

  • 进程/线程

    进程和线程 多任务的介绍 进程的介绍 多进程完成多任务 获取进程编号 进程的注意点 文件夹高并发copy器 1、多...

  • 网络爬虫:多任务-进程、线程

    实现多任务的方式 多线程多进程协程多线程+多进程 为什么你能够实现多任务? 并行:同时发起,同时执行,多进程,进程...

  • Python多线程多进程

    Python多线程多进程 QUICK START 1.[endif]进程和线程 1.1系统多任务机制 多任务操作的...

  • 2018-11-22进程,线程,协程

    进程:代码+资源,可以实现多任务线程:运行在进程中的最小单元,消耗资源小于进程 可以实现多任务协程:Python独...

  • 多任务-进程

    进程是资源分配的基本单元,进程包括资源和数据。而线程只有数据。他也能完成多任务。 使用方法:导入multiproc...

  • 多任务-进程

    一、进程及状态 1. 进程 程序:比如电脑安装了很多程序,又比如我们编写一个xxx.py程序,它们静静的保存在硬盘...

  • 简单了解进程、线程、协程

    当单任务不能满足工作的需要,只是需要使用多任务,多任务分为多进程,多线程,多协程 先有进程,进程创建线程,线程依附...

  • Python day13_进程

    用进程实现多任务 进程之间不共享全局变量

  • Node.js的异步I/O

    1. 多任务的实现 多任务的实现只有三种方式: 多进程 单进程+多线程 多进程+多线程 第三种过于复杂,实现很少。...

  • 简述进程池使用方法(Pool)

    # 进程池; 进程池Pool:里面放的都是进程,进程池可以根据任务自动创建进程,合理利用进程池中的进程完成多任务;...

网友评论

      本文标题:多任务-进程

      本文链接:https://www.haomeiwen.com/subject/ccovdftx.html