algorithms-ch1-Algorithms with n

作者: 暗黑破坏球嘿哈 | 来源:发表于2016-05-03 11:19 被阅读39次

1.1Basic arithmetic

1.1.1addition

-Given two binary numbers x and y, how long does our algorithm take to add them?
-We want the answer expressed as a function of the size of the input: the number of bits of x and y, the number of keystrokes needed to type them in.

Suppose x and y are each n bits long; O(n).

1.1.2multiplication

二进制乘法的两个算法:


0.0

If x and y are both n bits, then there are n intermediate rows, with lengths of up to 2n bits (taking the shifting into account). The total time taken to add up these rows, doing two numbers at a time, is O(n) + O(n) + · · · + O(n)..(n-1 times): O(n^2)


@.@
function multiply(x, y)
Input: Two n-bit integers x and y, where y ≥ 0
Output: Their product
/
if y=0: return0
z = multiply(x, ⌊y/2⌋)
//每次递归调用,接收到返回值之后 向递归下一步执行
if y is even:
  return 2z
else:
  return x + 2z
function divide(x,y)
Input: Two n-bit integers x and y, where y ≥ 1
Output: The quotient and remainder of x divided by y
/
if x = 0: return (q,r) = (0,0)
(q, r) = divide(⌊x/2⌋, y)
q=2·q, r=2·r
if x is odd: r=r+1
if r≥y: r=r−y, q=q+1
return (q,r)
1.2mod
  1. if x = qN + r with 0 ≤ r < N, then x modulo N is equal to r.

  2. x and y are congruent modulo N if they differ by a multiple of N , or in symbols:

x≡y (modN) ⇐⇒ N divides (x−y).

  1. Substitution rule
    If x ≡ x′ (mod N) and y ≡ y′ (mod N), then:x+y≡x′+y′ (modN) and xy≡x′y′ (modN).

  2. Modular addition and multiplication:

  • addition: O(n),
    n = ⌈log N ⌉ is the size of N ;(regard N as a binary number, n is the bits of this number, each bits need one operations)
    To add two numbers x and y modulo N, Since x and y are eachin the range 0 to N −1, their sum is between 0 and 2(N −1), The overall computation therefore consists of an addition, and possibly a subtraction

  • multiplication: O(n^2)
    using our quadratic-time division algorithm.Multiplication thus remains a quadratic operation.

  • Division: O(n^3)

  1. Modular exponentiation
    -Problem: compute x^y mod N for values of x, y, and N that are several hundred bits long
    -Sol1: x mod N →x^2 mod N →x^3 mod N →···→x^y mod N,
    -Sol2: x mod N →x^2 mod N →x^4 mod N →x8^ mod N →···→x2^⌊logy⌋ mod N.
    a polynomial time algorithm:
function modexp(x, y, N)
Input: Two n-bit integers x and N, an integer exponent y
Output: x^y mod N
/
if y=0: return1
z = modexp(x, ⌊y/2⌋, N )
if y is even:
  return z^2 mod N
else:
  return x · z^2 mod N
  1. Euclid's Alg for Great Common Divisor

Euclid’s rule If x and y are positive integers with x ≥ y, then gcd(x, y) = gcd(x mod y, y).

Lemma If a ≥ b,then a mod b < a/2.

function Euclid(a,b)
Input: Two integers a and b with a≥b≥0
Output: gcd(a, b)
/
if b=0: return a
return Euclid(b, a mod b)

both arguments, a and b, If they are initially n-bit integers, then the base case will be reached within 2n recursive calls. And since each call involves a quadratic-time division, the total time is O(n3).

Lemma if d divides both a and b, and d = ax + by for some integers x and y(may be negative) , then necessarily d = gcd(a,b)

function extended-euclid(a,b)
Input: Two positive integers a and b with a ≥ b ≥ 0
Output: Integers x,y, d, such that d=gcd(a,b) and ax+by=d
/
if b = 0: return (1,0,a)
(x′, y′, d) = Extended-Euclid(b, a mod b)
return (y′, x′ − ⌊a/b⌋y′, d)

模除法:gcd(a,N) = 1(即互质) <==> 存在x,使得ax ≡ 1 (mod N) (可用反证法证明)
左推右:用extend-euclid algorithm可以得到x,y
右推左:如果ax+Ny=d(gcd<=d), 且d整除a, N(d <=gcd),那么d==gcd(a, N)

  1. x is the multiplicative inverse of a modulo N if ax ≡ 1 (mod N).

Modular division theorem For any a mod N, a has a multiplicative inverse modulo N if and only if it is relatively prime to N. When this inverse exists, it can be found in time O(n3)(where as usual n denotes the number of bits of N ) by running the extended Euclid algorithm.

1.3prime
function primality(N)
Input: Positive integer N
Output: yes/no
/
Pick a positive integer a < N at random 
if a^(N−1) ≡ 1 (mod N):
  return yes
else:
  return no

exercise都是clrs上的不附了

相关文章

  • algorithms-ch1-Algorithms with n

    1.1Basic arithmetic 1.1.1addition -Given two binary numbe...

  • 难(nàn/nǎn)

    距离上篇文章已经两天了。 两天,四十八小时,两千八百八十分钟,十七万二千八百秒……发生了很多事。 在一天的勤奋后,...

  • 3D

    3D类似2D的加强版 matrix3d(n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n)Defin...

  • 无标题文章

    提前祝群里所有的朋友 ((((元旦快[乐])))) �n�n�n�n�n�n�n�n�n�n�n�n 圆圆满...

  • 顺利的配对经历

    <<Çā'n'ga'nşēn'>> Şò çēn' çu dò ki, guà'n çā'n' ga'n' nà ...

  • 关于算法的时间复杂度的排序

    O(1)

  • awk多列求和

    awk '{for(n=1;n<=NF;n++)t[n]+=$n}END{for(n=1;n<=NF;n++)pr...

  • 难(nán)!

    这几天他们都上学去了。(所在地:武汉) 我中考之后,报的是江夏区的学校,由于江夏的一些疫情原因,由原来的28、29...

  • 无标题文章

    n. n n. n n . nnnnw

  • js逗号记数法

    formatNumber :function(s, n) {n = n >= 0 && n <= 20 ? n :...

网友评论

    本文标题:algorithms-ch1-Algorithms with n

    本文链接:https://www.haomeiwen.com/subject/cdplrttx.html