美文网首页
点到点轨迹规划归纳

点到点轨迹规划归纳

作者: 甯谧 | 来源:发表于2018-12-01 13:05 被阅读0次

常用方法

三次曲线,五次曲线,梯形曲线,S曲线

背景知识

冲击

类别
1)刚性冲击
在运动的起点和终点处,速度发生突变。此时加速度理论上为无穷大,产生无穷大的惯性力,机构将产生极大的冲击,称为刚性冲击。
2)柔性冲击
柔性冲击是相对于刚性冲击而言的。在运动的起点和终点,速度没有突变,因此不存在刚性冲击;但加速度产生突变,产生较大的惯性力,由此引起的冲击称为柔性冲击。

区别
输入→输出
刚性冲击→速度突变
柔性冲击→加速度突变

影响
输入→输出
刚性冲击→无穷大惯性力,极大冲击
柔性冲击→较大惯性力

方法对比

三次曲线

公式
s(t)=a_{0}+a_{1}t+a_{2}t^2+a_{3}t^3

输入
s(0) s(T) \dot{s}(0) \dot{s}(T)

输出
a_{0} a_{1} a_{2} a_{3}

曲线

三次曲线

特点
\dot{s}(0) \dot{s}(T)不连续,即有冲击

五次曲线

公式
s(t)=a_{0}+a_{1}t+a_{2}t^2+a_{3}t^3+a_{4}t^4+a_{5}t^5

输入
s(T) \dot{s}(0) \dot{s}(T) \ddot{s}(0) \ddot{s}(T)

输出
a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}

曲线

五次曲线

特点
\dot{s}(0) \dot{s}(T)连续,消除三次曲线缺点

梯形曲线

公式
0\leq t\leq \frac{v}{a}: s(t)=\frac{1}{2}at^2
\frac{v}{a}\leq t\leq T-\frac{v}{a}: s(t)=vt-\frac{v^2}{2a}
T-\frac{v}{a}\leq t\leq T:s(t)=\frac{2avT-2v^2-a^2(t-T)^2}{2a}

输入
s(T) t_{a}=\frac{v}{a}(指定v,a v,T或a,T)

输出
1)指定v,a→T
2)指定v,T→a
3)指定a,T→v

曲线

梯形曲线

特点
t=0,t_{a},T-t_{a},T四个时刻加速度不连续,存在冲击

场景
电机控制中常用。

S曲线

公式
J=\frac{a^2v}{T_{f}va-v^2-a}, t_{1}=\frac{a}{J},t_{2}=\frac{v}{a}-\frac{a}{J},t_{3}=\frac{a}{J},t_{4}=\frac{2}{v}-T,t_{5}=\frac{a}{J},t_{6}=\frac{v}{a}-\frac{a}{J},t_{7}=\frac{a}{J}

Section1:
以恒定的痉挛J(加速度的导数)使加速度从0增加到预先设定的a
0\leq t< t_{1}: s(t)=\frac{1}{6}Jt^3
*Section2:
以恒定的加速度加速
t_{1}\leq t< t_{1}+t_{2}: s(t)=\frac{1}{2} a(t-t_{1})^2+ \frac{a^2}{2J}(t-t_{1})+\frac{a^3}{6J^2}

Section3:
已恒定的负的痉挛J(加速度的导数)使加速度从预先设定的a减到0
t_{1}+t_{2} \leq t < t_{1}+t_{2}+t_{3}:s(t)=-\frac{1}{6}J(t-t_{1}-t_{2})^3+\frac{1}{2}a(t-t_{1}-t_{2})^2+(at_{2}+\frac{a^2}{2J})·(t-t_{1}-t_{2})+\frac{1}{2}at_{2}^2+\frac{a^2}{2J}t_{2}+\frac{a^3}{6J^2}

Section4:
以恒定的速度v匀速运动
t_{1}+t_{2}+t_{3} \leq t < t_{1}+t_{2}+t_{3}+t_{4}:s(t)=(-\frac{1}{2}Jt_{3}^2+at_{3}+at_{2}+\frac{a^2}{2J})(t-t_{1}-t_{2}-t_{3})-\frac{1}{6}Jt_{3}^3+\frac{1}{2}at_{3}^2+(at_{2}+\frac{a^2}{2J})·t_{3}+\frac{1}{2}at_{2}^2+\frac{a^2}{2J}t_{2}+\frac{a^3}{6J^2}

Section5:
已恒定的负的痉挛J(加速度的导数)使加速度从0减到预先设定的-a
t_{1}+t_{2}+t_{3}+t_{4} \leq t < t_{1}+t_{2}+t_{3}+t_{4}+t_{5}:s(t)=1-s(t')其中t'=T-t

Section6:
以恒定的加速度-a减速
t_{1}+t_{2}+t_{3}+t_{4}+t_{5} \leq t < t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}:s(t)=1-s(t')其中t'=T-t

Section7:
以恒定的痉挛J(加速度的导数)使加速度从预先设定的-a增加到0
t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6} \leq t < t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+t_{7}:s(t)=1-s(t')其中t'=T-t

输入
J,t_{2},t_{4}

输出
1)a \leq v^2 无解
2)v^2 < a \leq 2v^2:\frac{v}{a}+\frac{1}{v} < T \leq \frac{2}{v}
3)a>2v^2: \frac{v}{a} + \frac{v}{1} < T \leq \frac{2v}{a} + \frac{1}{v}

曲线

S曲线

特点
t=0,t_{a},T-t_{a},T四个时刻加速度连续

参考文献

[1]刚性冲击
[2]柔性冲击
[3]点到点轨迹规划——三次曲线,五次曲线,梯形曲线,S曲线

相关文章

  • 点到点轨迹规划归纳

    常用方法 三次曲线,五次曲线,梯形曲线,S曲线 背景知识 冲击 类别1)刚性冲击在运动的起点和终点处,速度发生突变...

  • 规划人生轨迹

    事情从上大学开始说起。我的生活一路以来都被我安排的井井有条,相比别人我总是省去了很多的麻烦以及烦恼。 大学毕业的时...

  • 连续子数组最大和

    方法1:归纳法 方法2:动态规划

  • PHP算法之过河问题

    方法一:动态规划 运行结果 方法二:数学归纳 运行结果

  • matlab

    机械臂建模,轨迹规划,避障路径规划(介绍+代码)[https://blog.csdn.net/weixin_443...

  • 计算机网络——概要

    一、传输技术 从广义上讲,目前普遍使用的传输技术有两种,分别是广播式链路和点到点链路。 点到点链路——点到点链路将...

  • 展览展示的规划流程分析

    香港展会规划:展会规划的规划流程 香港展会规划:展会规划是一门归纳的规划艺术,是一种有用的、以视觉艺术为主的空间规...

  • 指爱之使命感

    生活如果是从点到点的简单循环,以我的个性会更加不急不慢地平淡一生。可生活的轨迹更像是不定时的抛物线,有高低起伏,有...

  • 20190421

    我领悟到下面几种能力很重要。分别是分类能力,逻辑能力,归纳能力,总结能力,计划能力(规划能力)。 分类,逻辑,归纳...

  • Apollo自动驾驶之规划(二)

    路径和速度 轨迹规划分为两步:路径规划、速度规划。 首先在路径规划步骤中生成候选曲线,这是车辆可行驶的路径。使用成...

网友评论

      本文标题:点到点轨迹规划归纳

      本文链接:https://www.haomeiwen.com/subject/dsulcqtx.html