美文网首页
利用CNN进行猫狗分类

利用CNN进行猫狗分类

作者: dataengineer | 来源:发表于2020-02-24 11:46 被阅读0次

竞赛介绍:Kaggle Dogs vs. Cats (https://www.kaggle.com/c/dogs-vs-cats

要点:

1. 用kaggle API下载数据后,train文件夹下的猫狗图片须分别归入2个文件夹,即cat和dog,否则flow_from_directory会报错

2. 由于该竞赛项目已经结束,本示例没有对test文件夹下的图片进行分类,而是用train文件夹下的图片进行训练和验证

3. train文件夹下共有25000张图片,其中猫狗各有12500张

代码部分:

# 加载libraries

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib.figure as fig

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# 设置文件路径

dir = os.getcwd()

train_dir = os.path.join(dir, 'train')

# 显示train文件夹下的猫狗图片

fig = plt.gcf()

fig.set_size_inches(10,10)

for i in range(9):

    plt.subplot(330 + 1 + i)

    file_name = train_dir + '\\dog\\dog.' + str(i) + '.jpg'

    im = plt.imread(file_name)

    plt.imshow(im)

fig = plt.gcf()

fig.set_size_inches(10,10)

for i in range(9):

    plt.subplot(330 + 1 + i)

    file_name = train_dir + '\\cat\\cat.' + str(i) + '.jpg'

    im = plt.imread(file_name)

    plt.imshow(im)

# 定义earlystopping,若验证数据集的精度在2个epoch后不再改进,则停止model fit

monitor_val_acc = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', patience=2)

# 定义model

model = tf.keras.models.Sequential([

    tf.keras.layers.Conv2D(filters = 32, kernel_size = (3,3), activation = 'relu', input_shape = (150,150,3)),

    tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

    tf.keras.layers.Conv2D(filters = 64, kernel_size = (3,3), activation = 'relu'),

    tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

    tf.keras.layers.Conv2D(filters = 128, kernel_size = (3,3), activation = 'relu'),

    tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

    tf.keras.layers.Conv2D(filters = 128, kernel_size = (3,3), activation = 'relu'),

    tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

    tf.keras.layers.Flatten(),

    tf.keras.layers.Dense(units = 512, activation = 'relu'),

    tf.keras.layers.Dense(units = 1, activation = 'sigmoid')   

])

# 编译model

model.compile(loss = 'binary_crossentropy',optimizer = 'adam', metrics = ['accuracy'])

# 定义ImageDataGenerator,同时考虑图像增强;如需将train数据集划分为训练和验证两个子集,需在此设置validation_split

train_datagen = ImageDataGenerator(rescale = 1./255,

                                  rotation_range = 40,

                                  width_shift_range=0.2,

                                  height_shift_range=0.2,

                                  shear_range=0.2,

                                  zoom_range=0.2,

                                  horizontal_flip=True,

                                  fill_mode='nearest',

                                  validation_split=0.2

                                  )

# 定义train_generator和validate_generator,classes根据label进行设置,class_mode根据应用场景设置(二分类为binary),subset根据用途分别设置为training和validation

train_generator = train_datagen.flow_from_directory(directory = train_dir,

                                                  target_size = (150,150),

                                                  classes = ['cat','dog'],

                                                    batch_size = 20,

                                                  class_mode = 'binary',

                                                  subset = 'training')

validate_generator = train_datagen.flow_from_directory(directory = train_dir,

                                                      target_size = (150,150),

                                                      classes = ['cat','dog'],

                                                      batch_size = 20,

                                                      class_mode = 'binary',

                                                      subset = 'validation')

Found 20000 images belonging to 2 classes.

Found 5000 images belonging to 2 classes.

# 训练model

history = model.fit_generator(generator = train_generator,

                            steps_per_epoch = 1000,

                            epochs = 20,

                            validation_data = validate_generator,

                            validation_steps = 250,

                              callbacks = [monitor_val_acc],

                              verbose = 2)

Epoch 1/20

1000/1000 - 795s - loss: 0.5794 - accuracy: 0.6880 - val_loss: 0.4907 - val_accuracy: 0.7618

Epoch 2/20

1000/1000 - 786s - loss: 0.4575 - accuracy: 0.7836 - val_loss: 0.3896 - val_accuracy: 0.8212

Epoch 3/20

1000/1000 - 804s - loss: 0.3608 - accuracy: 0.8391 - val_loss: 0.3579 - val_accuracy: 0.8384

Epoch 4/20

1000/1000 - 772s - loss: 0.2954 - accuracy: 0.8714 - val_loss: 0.3543 - val_accuracy: 0.8448

Epoch 5/20

1000/1000 - 765s - loss: 0.2313 - accuracy: 0.9015 - val_loss: 0.3222 - val_accuracy: 0.8662

Epoch 6/20

1000/1000 - 780s - loss: 0.1746 - accuracy: 0.9313 - val_loss: 0.3112 - val_accuracy: 0.8724

Epoch 7/20

1000/1000 - 797s - loss: 0.1204 - accuracy: 0.9523 - val_loss: 0.3935 - val_accuracy: 0.8784

Epoch 8/20

1000/1000 - 789s - loss: 0.0882 - accuracy: 0.9669 - val_loss: 0.4920 - val_accuracy: 0.8692

Epoch 9/20

1000/1000 - 800s - loss: 0.0594 - accuracy: 0.9785 - val_loss: 0.4468 - val_accuracy: 0.8770

训练数据集精度为0.9785,验证数据集精度为0.8770

# 绘制learning curves图

loss = history.history['loss']

val_loss = history.history['val_loss']

accuracy = history.history['accuracy']

val_accuracy = history.history['val_accuracy']

epoch = range(len(loss))

plt.style.use('ggplot')

plt.plot(epoch, loss, color = 'blue', label = 'training loss')

plt.plot(epoch, val_loss, color = 'red', label = 'validation loss')

plt.title('model loss', size = 20)

plt.legend()

plt.figure()

plt.plot(epoch, accuracy, color = 'blue', label = 'training accuracy')

plt.plot(epoch, val_accuracy, color = 'red', label = 'validation accuracy')

plt.title('model accuracy', size = 20)

plt.legend()

相关文章

  • 利用CNN进行猫狗分类

    竞赛介绍:Kaggle Dogs vs. Cats (https://www.kaggle.com/c/dogs-...

  • 基于keras2.0 + tensorflow1.2 + GP

    一: 前言 这次是利用的keras 2.08 版本配合tensorflow 1.2 + GPU 进行的CNN 猫狗...

  • 利用paddlepaddle进行猫狗分类

    因为百度的AIStudio平台提供了免费的GPU算力,而且帮我配好了运行环境,只不过需要使用paddlepaddl...

  • 2.CNN图片多标签分类(基于TensorFlow实现验证码识别

    上一篇实现了图片CNN单标签分类(猫狗图片分类任务)(地址:https://www.jianshu.com/p/4...

  • 利用VGG16进行猫狗分类

    要点: 1. 与上一篇学习笔记一致,本学习笔记仍然讨论Kaggle的猫狗分类问题。不同之处在于,上一篇笔记使用的方...

  • Tensorflow2.0 text-cnn 实践练习

    1.前 言 接着上篇,今天主要介绍利用TensorFlow2.0 进行英文文本分类,模型使用基本的CNN框架,后续...

  • 识别

    猫狗大战识别keras + tensorflow 实现猫和狗图像分类

  • CNN

    卷积神经网络在图像处理方面具有广泛应用,下面这张图展示了利用CNN来对图片进行特征提取,最后对图片进行分类的应用:...

  • 随机森林

    随机森林指的是利用多棵树对样本进行训练并预测的一种分类器 01、前言 宠物店里有猫和狗两种宠物,每个动物都有他编号...

  • 深度学习--Lstm+CNN 文本分类

    本文从实践的角度,来讲一下如何构建LSTM+CNN的模型对文本进行分类。 本文Github RNN网络与CNN网络...

网友评论

      本文标题:利用CNN进行猫狗分类

      本文链接:https://www.haomeiwen.com/subject/fsemqhtx.html