Task04:基于相似度的方法(3天)
● 理解基于距离的异常检测方法
● 掌握基于密度的LOF算法
1、概述
“异常”通常是一个主观的判断,什么样的数据被认为是“异常”的,需要结合业务背景和环境来具体分析确定。实际上,数据通常嵌入在大量的噪声中,而我们所说的“异常值”通常指具有特定业务意义的那一类特殊的异常值。噪声可以视作特性较弱的异常值,没有被分析的价值。噪声和异常之间、正常数据和噪声之间的边界都是模糊的。异常值通常具有更高的离群程度分数值,同时也更具有可解释性。
在普通的数据处理中,我们常常需要保留正常数据,而对噪声和异常值的特性则基本忽略。但在异常检测中,我们弱化了“噪声”和“正常数据”之间的区别,专注于那些具有有价值特性的异常值。在基于相似度的方法中,主要思想是异常点的表示与正常点不同。
2、基于距离的度量
- 基于单元的方法
- 基于索引的方法
基于距离的方法是一种常见的适用于各种数据域的异常检测算法,它基于最近邻距离来定义异常值。 此类方法不仅适用于多维数值数据,在其他许多领域,例如分类数据,文本数据,时间序列数据和序列数据等方面也有广泛的应用。
基于距离的异常检测有这样一个前提假设,即异常点的 k 近邻距离要远大于正常点。解决问题的最简单方法是使用嵌套循环。 第一层循环遍历每个数据,第二层循环进行异常判断,需要计算当前点与其他点的距离,一旦已识别出多于 k 个数据点与当前点的距离在 D 之内,则将该点自动标记为非异常值。 这样计算的时间复杂度为O(N2),当数据量比较大时,这样计算是及不划算的。 因此,需要修剪方法以加快距离计算。
3、基于密度的度量
- k-距离(k-distance(p))
- k-邻域(k-distance neighborhood)
- 可达距离(reachability distance)
- 局部可达密度(local reachability density)
- 局部异常因子
基于密度的算法主要有局部离群因子(LocalOutlierFactor,LOF),以及LOCI、CLOF等基于LOF的改进算法。
基于距离的检测适用于各个集群的密度较为均匀的情况。在下图中,离群点B容易被检出,而若要检测出较为接近集群的离群点A,则可能会将一些集群边缘的点当作离群点丢弃。而LOF等基于密度的算法则可以较好地适应密度不同的集群情况。
下面给出LOF方法的代码。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus']=False
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
np.random.seed(61)
# 构造两个数据点集群
X_inliers1 = 0.2 * np.random.randn(100, 2)
X_inliers2 = 0.5 * np.random.randn(100, 2)
# np.r_为左右拼接两个矩阵,r-rows
X_inliers = np.r_[X_inliers1 + 2, X_inliers2 - 2]
# 构造一些离群的点
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
# 拼成训练集
X = np.r_[X_inliers, X_outliers]
n_outliers = len(X_outliers)
ground_truth = np.ones(len(X), dtype=int)
# 打标签,群内点构造离群值为1,离群点构造离群值为-1
ground_truth[-n_outliers:] = -1
plt.title('构造数据集 (LOF)')
plt.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], color='b', s=5, label='集群点')
plt.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], color='orange', s=5, label='离群点')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
legend = plt.legend(loc='upper left')
legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]
plt.show()
# 训练模型(找出每个数据的实际离群值)
clf = LocalOutlierFactor(n_neighbors=20, contamination=0.1)
# 对单个数据集进行无监督检测时,以1和-1分别表示非离群点与离群点
y_pred = clf.fit_predict(X)
# 找出构造离群值与实际离群值不同的点
n_errors = y_pred != ground_truth
X_pred = np.c_[X,n_errors]
X_scores = clf.negative_outlier_factor_
# 实际离群值有正有负,转化为正数并保留其差异性(不是直接取绝对值)
X_scores_nor = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min())
X_pred = np.c_[X_pred,X_scores_nor]
X_pred = pd.DataFrame(X_pred,columns=['x','y','pred','scores'])
X_pred_same = X_pred[X_pred['pred'] == False]
X_pred_different = X_pred[X_pred['pred'] == True]
# 直观地看一看数据
# print(X_pred)
plt.title('局部离群因子检测 (LOF)')
plt.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], color='b', s=5, label='集群点')
plt.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], color='orange', s=5,
label='离群点')
# 以标准化之后的局部离群值为半径画圆,以圆的大小直观表示出每个数据点的离群程度
# plt.scatter(X_pred_same.values[:,0], X_pred_same.values[:, 1],
# s=1000 * X_pred_same.values[:, 3], edgecolors='c',
# facecolors='none', label='标签一致')
plt.scatter(X_pred_different.values[:, 0], X_pred_different.values[:, 1],
s=1000 * X_pred_different.values[:, 3], edgecolors='violet',
facecolors='none', label='预测标签不同')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
legend = plt.legend(loc='upper left')
legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]
plt.show()
可以看出,模型成功区分出了大部分的离群点,一些因为随机原因散落在集群内部的“离群点”也被识别为集群内部的点,但是一些与集群略为分散的“集群点”则被识别为离群点。
同时可以看出,模型对于不同密度的集群有着较好的区分度,对于低密度集群与高密度集群使用了不同的密度阈值来区分是否离群点。
因此,我们从直观上可以得到一个印象,即基于LOF模型的离群点识别在某些情况下,可能比基于某种统计学分布规则的识别更加符合实际情况。
网友评论