环境

作者: 博士伦2014 | 来源:发表于2018-12-11 20:11 被阅读0次

1. 导入需要的库

import numpy as np
import csv

2. 定义三角函数用于坐标系转换

# cos(x)
def C(x):
    return np.cos(x)
# sin(x)
def S(x):
    return np.sin(x)

3. 定义转换矩阵:大地坐标系---->随体坐标系

def earth_to_body_frame(ii, jj, kk):
    # C^b_n
    R = [[C(kk) * C(jj), C(kk) * S(jj) * S(ii) - S(kk) * C(ii), C(kk) * S(jj) * C(ii) + S(kk) * S(ii)],
         [S(kk) * C(jj), S(kk) * S(jj) * S(ii) + C(kk) * C(ii), S(kk) * S(jj) * C(ii) - C(kk) * S(ii)],
         [-S(jj), C(jj) * S(ii), C(jj) * C(ii)]]
    return np.array(R)

4. 定义转换矩阵:随体坐标系---->大地坐标系

def body_to_earth_frame(ii, jj, kk):
    # C^n_b
    return np.transpose(earth_to_body_frame(ii, jj, kk))

5. 将飞行器运动模型定义成一个类

5.1 定义__init__()函数

class PhysicsSim():
    def __init__(self, init_pose=None, init_velocities=None, init_angle_velocities=None, runtime=5.):
        self.init_pose = init_pose
        self.init_velocities = init_velocities
        self.init_angle_velocities = init_angle_velocities
        self.runtime = runtime

        self.gravity = -9.81  # m/s
        self.rho = 1.2        # 油门线性占空比
        self.mass = 0.958     # 300 g
        self.dt = 1 / 50.0    # Timestep
        self.C_d = 0.3        # 螺旋桨拉力系数
        self.l_to_rotor = 0.4 
        self.propeller_size = 0.1 # 螺旋桨尺寸
        width, length, height = .51, .51, .235 # 飞机的尺寸规格
        self.dims = np.array([width, length, height])  # x, y, z dimensions of quadcopter
        self.areas = np.array([length * height, width * height, width * length])
       
        # 转动惯量
        I_x = 1 / 12. * self.mass * (height**2 + width**2)
        I_y = 1 / 12. * self.mass * (height**2 + length**2)  # 0.0112 was a measured value
        I_z = 1 / 12. * self.mass * (width**2 + length**2)
        self.moments_of_inertia = np.array([I_x, I_y, I_z])  # 惯性矩
       
        # 限定飞行器的运动范围
        env_bounds = 300.0  # 300 m / 300 m / 300 m
        self.lower_bounds = np.array([-env_bounds / 2, -env_bounds / 2, 0])
        # [-150, -150, 0]
        self.upper_bounds = np.array([env_bounds / 2, env_bounds / 2, env_bounds])
        # [150,150,300]
        self.reset()

5.2 定义reset(self)函数

与最后的next_step()函数对应,这里出现的变量,在next_step()函数中都会再出现

  1. 时间
  2. 位姿:[x,y,z,\phi,\theta,\psi] 初始化为[0, 0, 10, 0, 0, 0]
  3. 对地速度:[dx,dy,dz] 初始化为[0, 0, 0]
  4. 对地角速度:[d\phi,d\theta,d\psi] 初始化为[0, 0, 0]
  5. 对地加速度
  6. 对地角加速度
  7. 螺旋桨风速
    def reset(self):
     1. self.time = 0.0
     2. self.pose = np.array([0.0, 0.0, 10.0, 0.0, 0.0, 0.0]) if self.init_pose is None else self.init_pose
     3. self.v = np.array([0.0, 0.0, 0.0]) if self.init_velocities is None else self.init_velocities
     4. self.angular_v = np.array([0.0, 0.0, 0.0]) if self.init_angle_velocities is None else self.init_angle_velocities
     5. self.linear_accel = np.array([0.0, 0.0, 0.0])
     6. self.angular_accels = np.array([0.0, 0.0, 0.0])
     7. self.prop_wind_speed = np.array([0., 0., 0., 0.])
     8. self.done = False

5.3 计算随体速度

调用 earth_to_body_frame(ii, jj, kk) 转换矩阵:大地坐标系---->随体坐标系
返回随体速度[u,v,w]

    def find_body_velocity(self):
        body_velocity = np.matmul(earth_to_body_frame(*list(self.pose[3:])), self.v)
        return body_velocity

5.4 计算阻力

    def get_linear_drag(self):
        linear_drag = 0.5 * self.rho * self.find_body_velocity()**2 * self.areas * self.C_d
        return linear_drag

5.5 计算螺旋桨产生的拉力

    def get_linear_forces(self, thrusts):
        # Gravity
        gravity_force = self.mass * self.gravity * np.array([0, 0, 1])
        # Thrust
        thrust_body_force = np.array([0, 0, sum(thrusts)])
        # Drag
        drag_body_force = -self.get_linear_drag()
        body_forces = thrust_body_force + drag_body_force

        linear_forces = np.matmul(body_to_earth_frame(*list(self.pose[3:])), body_forces)
        linear_forces += gravity_force
        return linear_forces

5.6 计算力矩

    def get_moments(self, thrusts):
       # 推力矩
        thrust_moment = np.array([(thrusts[3] - thrusts[2]) * self.l_to_rotor,
                            (thrusts[1] - thrusts[0]) * self.l_to_rotor,
                            0])# (thrusts[2] + thrusts[3] - thrusts[0] - thrusts[1]) * self.T_q])  # Moment from thrust

        drag_moment =  self.C_d * 0.5 * self.rho * self.angular_v * np.absolute(self.angular_v) * self.areas * self.dims * self.dims
        moments = thrust_moment - drag_moment # + motor_inertia_moment
        return moments

5.7 计算螺旋桨风速

    def calc_prop_wind_speed(self):
        body_velocity = self.find_body_velocity()
        phi_dot, theta_dot = self.angular_v[0], self.angular_v[1]
        s_0 = np.array([0., 0., theta_dot * self.l_to_rotor])
        s_1 = -s_0
        s_2 = np.array([0., 0., phi_dot * self.l_to_rotor])
        s_3 = -s_2
        speeds = [s_0, s_1, s_2, s_3]
        for num in range(4):
            perpendicular_speed = speeds[num] + body_velocity
            self.prop_wind_speed[num] = perpendicular_speed[2]

5.8 计算净推力 - thrusts

    def get_propeler_thrust(self, rotor_speeds):
        '''根据螺旋桨的速度和输入功率计算净推力(推力 - 阻力)'''
        thrusts = []
        for prop_number in range(4):
            V = self.prop_wind_speed[prop_number]
            D = self.propeller_size
            n = rotor_speeds[prop_number]
            J = V / n * D
            # From http://m-selig.ae.illinois.edu/pubs/BrandtSelig-2011-AIAA-2011-1255-LRN-Propellers.pdf
            C_T = max(.12 - .07*max(0, J)-.1*max(0, J)**2, 0)
            thrusts.append(C_T * self.rho * n**2 * D**4)
        return thrusts

5.9 计算下一时间步的状态

此处使用的是前向欧拉方程:从当前时刻出发,根据当前时刻的函数值及其导数,可得到下一时刻的值
参考:https://www.jianshu.com/p/e774e75f1263

    def next_timestep(self, rotor_speeds):
    7.  self.calc_prop_wind_speed()
        thrusts = self.get_propeler_thrust(rotor_speeds)
    5.  self.linear_accel = self.get_linear_forces(thrusts) / self.mass

        position = self.pose[:3] + self.v * self.dt + 0.5 * self.linear_accel * self.dt**2
    3.  self.v += self.linear_accel * self.dt

        moments = self.get_moments(thrusts)

    6.  self.angular_accels = moments / self.moments_of_inertia
        angles = self.pose[3:] + self.angular_v * self.dt + 0.5 * self.angular_accels* self.dt*self.dt
        angles = (angles + 2 * np.pi) % (2 * np.pi)
    4.  self.angular_v = self.angular_v + self.angular_accels * self.dt

        new_positions = []
        for ii in range(3):
            if position[ii] <= self.lower_bounds[ii]:
                new_positions.append(self.lower_bounds[ii])
                self.done = True
            elif position[ii] > self.upper_bounds[ii]:
                new_positions.append(self.upper_bounds[ii])
                self.done = True
            else:
                new_positions.append(position[ii])

    2.  self.pose = np.array(new_positions + list(angles))
    1.  self.time += self.dt
        if self.time > self.runtime:
            self.done = True
        return self.done
  1. 位姿:[x,y,z,\phi,\theta,\psi]

相关文章

网友评论

      本文标题:环境

      本文链接:https://www.haomeiwen.com/subject/jsiehqtx.html