美文网首页
2019-12-11

2019-12-11

作者: 云外雁行斜丶 | 来源:发表于2019-12-11 18:08 被阅读0次

42. Trapping Rain Water

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

avatar

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

Example:

Input: [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6

First

找到最大值,然后进行两次遍历

class Solution(object):
    def trap(self, height):
        """
        :type height: List[int]
        :rtype: int
        """
        if not height: return 0
        ans, tmp = 0, 0

        max_height = (0, height[0])
        for i, v in enumerate(height):
            if v >= max_height[1]:
                max_height = (i, v)
        left = (0, height[0])
        for i, v in enumerate(height[:max_height[0]+1]):
            if v >= left[1]:
                ans += (i-left[0]) * left[1] + tmp
                left = (i, v)
                tmp = 0
            tmp -= v
        tmp, left = 0, (0, height[-1])
        sli = max_height[0] - len(height) - 1
        print sli
        for i, v in enumerate(height[-1:sli:-1]):
            if v >= left[1]:
                ans += (i-left[0]) * left[1] + tmp
                left = (i, v)
                tmp = 0
            tmp -= v
        return ans


s = Solution()
print s.trap([1,0,0,0,2,1,0,4,1,0,3])
print s.trap([4,2,3])

相关文章

网友评论

      本文标题:2019-12-11

      本文链接:https://www.haomeiwen.com/subject/ltragctx.html