美文网首页
B-树、B+树、B*树、LSM树优缺点比较

B-树、B+树、B*树、LSM树优缺点比较

作者: Minority | 来源:发表于2020-04-16 10:02 被阅读0次

动态查找树主要有二叉查找树(Binary Search Tree,BST),平衡二叉查找树(Balanced Binary Search Tree,AVL), 红黑树 (Red-Black Tree ),都是典型的二叉查找树结构,查找的时间复杂度都与树的深度相关,降低树的深度会提高查找效率,于是有了多路的B-tree/B+-tree/ B*-tree。

一、 B-tree VS B+ tree

首先注意:B树就是B-树,"-"是个连字符号,不是减号。

B-树是一种平衡的多路查找(又称排序)树,在文件系统中有所应用。主要用作文件的索引。其中的B就表示平衡(Balance)

B树的优势是当你要查找的值恰好处在一个非叶子节点时,查找到该节点就会成功并结束查询,而B+树由于非叶节点只是索引部分,这些节点中只含有其子树中的最大(或最小)关键字,当非终端节点上的关键字等于给点值时,查找并不终止,而是继续向下直到叶子节点。因此在B+树中,无论查找成功与否,都是走了一条从根到叶子节点的路径。

B+树有一个最大的好处,方便扫库,B树必须用中序遍历的方法按序扫库,而B+树直接从叶子结点挨个扫一遍就完了。

B+树支持range-query(区间查询)非常方便,而B树不支持。这是数据库选用B+树的最主要原因。

比如要查 5-10之间的,B+树一把到5这个标记,再一把到10,然后串起来就行了,B树就非常麻烦。B树的好处,就是成功查询特别有利,因为树的高度总体要比B+树矮。不成功的情况下,B树也比B+树稍稍占一点点便宜。

有很多基于频率的搜索是选用B树,越频繁query的结点越往根上走,前提是需要对query做统计,而且要对key做一些变化。 另外B树也好B+树也好,根或者上面几层因为被反复query,所以这几块基本都在内存中,不会出现读磁盘IO,一般已启动的时候,就会主动换入内存。 mysql底层存储是用B+树实现的,因为内存中B+树是没有优势的,但是一到磁盘,B+树的威力就出来了。

二、 B+ tree VS B* tree

B*树 是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针

所以,B*树分配新结点的概率比B+树要低,空间使用率更高。

三、 B+ tree VS LSM tree

LSM树是HBase里非常有创意的一种数据结构,它和传统的B+树不太一样,下面先说说B+树。

B+ tree

B+树大家已经非常的熟悉,如下图所示:


B+ tree

根节点和枝节点很简单,分别记录每个叶子节点的最小值,并用一个指针指向叶子节点。

叶子节点里每个键值都指向真正的数据块(如Oracle里的RowID),每个叶子节点都有前指针和后指针,这是为了做范围查询时,叶子节点间可以直接跳转,从而避免再去回溯至枝和跟节点。

B+树最大的性能问题是会产生大量的随机IO,随着新数据的插入,叶子节点会慢慢分裂,逻辑上连续的叶子节点在物理上往往不连续,甚至分离的很远,但做范围查询时,会产生大量读随机IO。

对于大量的随机写也一样,举一个插入key跨度很大的例子,如7->1000->3->2000 ... 新插入的数据存储在磁盘上相隔很远,会产生大量的随机写IO。

从上面可以看出,低下的磁盘寻道速度严重影响性能(近些年来,磁盘寻道速度的发展几乎处于停滞的状态)。

LSM tree

为了克服B+树的弱点,HBase引入了LSM树的概念,即Log-Structured Merge-Trees。

为了更好的说明LSM树的原理,下面举个比较极端的例子:

现在假设有1000个节点的随机key,对于磁盘来说,肯定是把这1000个节点顺序写入磁盘最快,但是这样一来,读就悲剧了,因为key在磁盘中完全无序,每次读取都要全扫描;

那么,为了让读性能尽量高,数据在磁盘中必须得有序,这就是B+树的原理,但是写就悲剧了,因为会产生大量的随机IO,磁盘寻道速度跟不上。

LSM树本质上就是在读写之间取得平衡,和B+树相比,它牺牲了部分读性能,用来大幅提高写性能。

它的原理是把一颗大树拆分成N棵小树, 它首先写入到内存中(内存没有寻道速度的问题,随机写的性能得到大幅提升),在内存中构建一颗有序小树,随着小树越来越大,内存的小树会flush到磁盘上。当读时,由于不知道数据在哪棵小树上,因此必须遍历所有的小树,但在每颗小树内部数据是有序的。


LSM tree

以上就是LSM树最本质的原理,有了原理,再看具体的技术就很简单了:

1)首先说说为什么要有WAL(Write Ahead Log),很简单,因为数据是先写到内存中,如果断电,内存中的数据会丢失,因此为了保护内存中的数据,需要在磁盘上先记录logfile,当内存中的数据flush到磁盘上时,就可以抛弃相应的Logfile。

2)什么是memstore, storefile?很简单,上面说过,LSM树就是一堆小树,在内存中的小树即memstore,每次flush,内存中的memstore变成磁盘上一个新的storefile。

3)为什么会有compact?很简单,随着小树越来越多,读的性能会越来越差,因此需要在适当的时候,对磁盘中的小树进行merge,多棵小树变成一颗大树。

参考:

相关文章

网友评论

      本文标题:B-树、B+树、B*树、LSM树优缺点比较

      本文链接:https://www.haomeiwen.com/subject/mymlvhtx.html