美文网首页
Cart 回归树

Cart 回归树

作者: JeremyL | 来源:发表于2022-05-18 15:19 被阅读0次

代码来自《机器学习实战一书》;

代码已经由github的wzy6642整理成python3版本:https://github.com/wzy6642/Machine-Learning-in-Action-Python3

regTrees.py

"""
树构建算法其实对输入的参数tolS和tolN非常敏感
# tolS:容许的误差下降值->对误差的数量级十分敏感
tolS = ops[0]
# tolN:切分的最少样本数
tolN = ops[1]
"""

import numpy as np

"""
# Load data

Parameters:
    fileName: File name
    
Returns:
    
"""
def loadDataSet(fileName):
    dataMat = []
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = list(map(float, curLine))
        dataMat.append(fltLine)
    return dataMat


"""
# Split data
Parameters:
    dataSet: data set
    feature: feature choosed to divide
    value: feature value
    
Returns:
    mat0: subset
    mat1: subset

Note:
    Split the dataset into two based on feature and its value;
    当数据特征值小于等于阈值,样本划分到左子树,反之样本划分到右子树。
"""
def binSplitDataSet(dataSet, feature, value):
    mat0 = dataSet[np.nonzero(dataSet[:, feature] > value)[0], :]
    mat1 = dataSet[np.nonzero(dataSet[:, feature] <= value)[0], :]
    return mat0, mat1

"""
# Generate leaf node

Parameters:
    dataSet: data set
    
Returns:
    Mean value of node

"""
def regLeaf(dataSet):
    return np.mean(dataSet[:, -1])


"""
# function to caculate variance

Parameters:
    dataSet:
    
Returns:
    Total square error (total variance) = mean square error * the number of sample
"""
def regErr(dataSet):
    return np.var(dataSet[:, -1]) * dataSet.shape[0]

"""
伪代码:
  对每个特征:
    对每个特征值:
        将数据集切分成两份
        计算切分的误差 
        如果当前误差小于当前最小误差,那么将当前切分设定为最佳切分并更新最小误差
  返回最佳切分的特征和阈值
  
函数说明:找到数据的最佳切分方式的特征和特征值

Parameters:
    dataSet
    leafType:生成叶结点的函数
    errType:误差估计函数
    ops:用户定义的参数构成的元组

Returns:
    bestIndex: 最佳切分特征
    bestValue: 最佳切分特征值
"""
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)):
    # tolS:容许的误差下降值
    tolS = ops[0] #default is 0
    # tolN:切分的最少样本数
    tolN = ops[1]
    # 1)所有值都一样,不需要再切分,直接创建叶节点
    if len(set(dataSet[:, -1].T.tolist()[0])) == 1:
        return None, leafType(dataSet)
    # 行=m,列=n
    m, n = np.shape(dataSet)
    # 总方差
    S = errType(dataSet)
    # 分别为最佳误差,最佳特征切分的索引值,最佳特征值
    bestS = float('inf') #errType(dataSet)
    bestIndex = 0
    bestValue = 0 
    # 遍历所有特征
    for featIndex in range(n-1):
        # 遍历所有特征值
        for splitVal in set(dataSet[:, featIndex].T.A.tolist()[0]):
            # 根据特征和特征值切分数据集
            mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
            # 如果拆分的节点样本数少于tolN,则退出
            if(np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN):
                continue
            # 计算误差估计,寻找newS的最小值
            newS = errType(mat0) + errType(mat1)
            # 如果误差估计更小,则更新特征索引值和特征值
            if newS < bestS:
                # 特征索引
                bestIndex = featIndex
                # 分割标准
                bestValue = splitVal
                # 更新目标函数的最小值
                bestS = newS
    # 2)如果误差减少不大则退出,不会切分,直接创建叶节点
    if (S - bestS) < tolS:
        return None, leafType(dataSet)
    # 根据最佳的切分特征和特征值切分数据集合
    mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
    # 3)如果切分出的数据集很小则退出, 不会切分,直接创建叶节点
    if(np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN):
        return None, leafType(dataSet)
    # 返回最佳切分特征和特征值
    return bestIndex, bestValue

"""
伪代码:
找到最佳的待切分特征: 
    如果该节点不能再分,将该节点存为叶节点 
    执行二元切分 
    在右子树调用createTree()方法 
    在左子树调用createTree()方法
Parameters:
    dataSet - data set
    leafType - the function of establishing leaf nodes
    errType - the error calculation function
    ops - a tuple containing other parameters required for tree construction.

Returns:
    retTree - Constructed regression tree
"""
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)):
    # 选择最佳切分特征和特征值
    feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
    # 如果没有特征,则返回特征值
    if feat == None:
        return val
    # 回归树
    retTree = {}
    # 分割特征索引
    retTree['spInd'] = feat
    # 分割标准
    retTree['spVal'] = val
    # 分成左数据集和右数据集
    lSet, rSet = binSplitDataSet(dataSet, feat, val)
    # 创建左子树和右子树 递归
    retTree['left'] = createTree(lSet, leafType, errType, ops)
    retTree['right'] = createTree(rSet, leafType, errType, ops)
    return retTree

"""
# 用于测试输入变量是否是一棵树(树是通过字典存储的)
        
Parameters:
    obj:测试对象

Returns:
    布尔值
"""
def isTree(obj):
    return (type(obj).__name__ == 'dict')


"""
函数说明:对树进行塌陷处理(即返回树平均值)
        
Parameters:
    tree - 树

Returns:
    树的平均值
"""
def getMean(tree):
    if isTree(tree['right']):
        tree['right'] = getMean(tree['right'])
    if isTree(tree['left']):
        tree['left'] = getMean(tree['left'])
    return (tree['left'] + tree['right']) / 2.0


"""
# 后剪枝
        
Parameters:
    tree: 待剪枝的树
    testData: 剪枝所需的测试数据

Returns:
    树
"""
def prune(tree, testData):
    # 如果测试集为空,则对树进行塌陷处理
    if np.shape(testData)[0] == 0:
        return getMean(tree)
    # 如果有左子树或者右子树,则切分数据集
    if (isTree(tree['right']) or isTree(tree['left'])):
        lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
    # 处理左子树(剪枝)
    if isTree(tree['left']):
        tree['left'] = prune(tree['left'], lSet)
    # 处理右子树(剪枝)
    if isTree(tree['right']):
        tree['right'] = prune(tree['right'], rSet)
    # 如果当前节点的左右结点为叶结点
    if not isTree(tree['left']) and not isTree(tree['right']):
        lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
        # 计算没有合并的误差
        errorNoMerge = np.sum(np.power(lSet[:, -1] - tree['left'], 2)) + np.sum(np.power(rSet[:, -1] - tree['right'], 2))
        # 计算合并的均值
        treeMean = (tree['left'] + tree['right']) / 2.0
        # 计算合并的误差
        errorMerge = np.sum(np.power(testData[:, -1] - treeMean, 2))
        # 如果合并的误差小于没有合并的误差,合并
        if errorMerge < errorNoMerge:
            print("merging")
            return treeMean
        else:
            return tree
    else:
        return tree
    
# model trees

"""
# data process and caculate coefficient
Parameters:
    dataSet

Returns:
    ws
    X
    Y
"""
def linearSolve(dataSet):
    m, n = np.shape(dataSet)
    X = np.mat(np.ones((m, n)))
    Y = np.mat(np.ones((m, 1)))
    # 保存特征矩阵X的第一列全为1
    X[:, 1:n] = dataSet[:, 0:n-1]
    # 保存label列向量
    Y = dataSet[:, -1]
    # 简单线性回归
    xTx = X.T * X
    # 奇异矩阵不可以求逆
    if np.linalg.det(xTx) == 0.0:
        raise NameError('This matrix is singular, cannont do inverse,\n\
                        try increasing the second value of ops')
    # 求解回归系数
    ws = xTx.I * (X.T * Y)
    return ws, X, Y
    

"""
# retrun regression coefficient(ws) from linearSolve
        
Parameters:
    dataSet

Returns:
    ws: regression coefficient
"""
def modelLeaf(dataSet):
    ws, X, Y = linearSolve(dataSet)
    return ws


"""
# calculation error
        
Parameters:
    dataSet

Returns:
    error value
"""
def modelErr(dataSet):
    ws, X, Y = linearSolve(dataSet)
    yHat = X * ws
    # Square error between yHat(predicted value) and y.
    return sum(np.power(Y - yHat, 2))

# 树回归与标准回归的比较
# 用树回归进行预测

"""
regression tree
函数说明:返回回归树叶结点值
        由于Tree的叶结点数据类型为matrix所以需要转化为float类型
        
Parameters:
    model - tree叶结点
    inDat - 输入数据

Returns:
    叶结点值
"""
def regTreeEval(model, inDat):
    return float(model)


"""   
model tree     
Parameters:
    model - 叶结点值
    inDat - 输入的特征矩阵

Returns:
    预测值 相当于X*ws
"""
def modelTreeEval(model, inDat):
    n = np.shape(inDat)[1]
    X = np.mat(np.ones((1, n+1)))
    X[:, 1:n+1] = inDat
    return float(X * model)


"""
自顶向下遍历整棵树,直到命中叶节点为止。一旦到达叶节点,它就会在输入数据上调用modelEval或regTreeEval
        
Parameters:
    tree - 树结构
    inData - 需要预测的单个数据
    modelEval - 回归树或模型树

Returns:
    误差值
"""
def treeForeCast(tree, inData, modelEval=regTreeEval):
    # 如果搜索到叶结点就返回叶结点的值
    if not isTree(tree):
        return modelEval(tree, inData)
    # 数据实际值大于分割标准
    print("数据实际值大于分割标准")
    if inData[tree['spInd']] > tree['spVal']:
        # 如果有左子树则递归
        if isTree(tree['left']):
            return treeForeCast(tree['left'], inData, modelEval)
        # 否则返回该叶结点值
        else:
            return modelEval(tree['left'], inData)
    # 小于则在右边
    else:
        # 如果有右子树则递归
        if isTree(tree['right']):
            return treeForeCast(tree['right'], inData, modelEval)
        # 否则返回该叶结点值
        else:
            return modelEval(tree['right'], inData)


"""
多次调用treeForeCast()函数。由于它能够以 向量形式返回一组预测值,因此该函数在对整个测试集进行预测时非常有用。
        
Parameters:
    tree - 树结构
    testData - 测试数据集
    modelEval - 求解方式

Returns:
    yHat - 预测值
"""
def createForeCast(tree, testData, modelEval=regTreeEval):
    m = len(testData)
    yHat = np.mat(np.zeros((m, 1)))
    for i in range(m):
        yHat[i, 0] = treeForeCast(tree, np.mat(testData[i]), modelEval)
    return yHat

调用构建好的决策树:

import regTrees
from numpy import*

# 构建树例子
testMat=mat(eye(4))
print(testMat)
mat0,mat1=regTrees.binSplitDataSet(testMat,1,0.5)
print(mat0)
print(mat1)

myDat=regTrees.loadDataSet('ex00.txt')
myMat=mat(myDat)
root=regTrees.createTree(myMat)
print(root)


myDat1=regTrees.loadDataSet('ex0.txt')
myMat1=mat(myDat1)
root=regTrees.createTree(myMat1)
print(root)

myDat2=regTrees.loadDataSet('ex2.txt')
myMat2=mat(myDat2)
root=regTrees.createTree(myMat2)
print(root)

root=regTrees.createTree(myMat2,ops=(0, 4))
print(root)

root=regTrees.createTree(myMat2,ops=(10000, 4))
print(root)

# 预剪枝例子
myTree = regTrees.createTree(myMat2,ops=(0, 1))
print(myTree)
myDatTest=regTrees.loadDataSet('ex2test.txt')
myDat2Test=mat(myDatTest)
regTrees.prune(myTree, myDat2Test)
myMat2=mat(regTrees.loadDataSet('exp2.txt'))
root=regTrees.createTree(myMat2,regTrees.modelLeaf,regTrees.modelErr,(1,10))
print(root)

# 模型树
# raw data <- y=3.5+1.0x和y=0+12x
myMat2=mat(regTrees.loadDataSet('exp2.txt'))
root=regTrees.createTree(myMat2,regTrees.modelLeaf,regTrees.modelErr,(1,10))
print(root)


def plotDataSet(filename):
    dataMat = loadDataSet(filename)
    n = len(dataMat)
    xcord = []
    ycord = []
    # 样本点
    for i in range(n):
        xcord.append(dataMat[i][0])
        ycord.append(dataMat[i][1])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    # 绘制样本点
    ax.scatter(xcord, ycord, s=20, c='black', alpha=.5)
    plt.title('DataSet')
    plt.xlabel('X')
    # plt.show()
    
train_filename = 'exp2.txt'
train_Data = regTrees.loadDataSet(train_filename)
dataMat = np.mat(train_Data)
Tree = regTrees.createTree(dataMat, modelLeaf, modelErr, (1, 10))
print(Tree)

plotDataSet(train_filename)

#树回归与标准回归的比较
trainMat=mat(regTrees.loadDataSet('bikeSpeedVsIq_train.txt'))
testMat=mat(regTrees.loadDataSet('bikeSpeedVsIq_test.txt'))

#创建一颗回归树
myTree=regTrees.createTree(trainMat,ops=(1,20))
yHat=regTrees.createForeCast(myTree,testMat[:,0])
RCor=corrcoef(yHat,testMat[:,1],rowvar=0)[0,1]
print("回归树拟合相关性 = ", RCor)

#创建一颗模型树
myTree2=regTrees.createTree(trainMat,regTrees.modelLeaf,regTrees.modelErr,(1,20))
yHat=regTrees.createForeCast(myTree2,testMat[:,0],regTrees.modelTreeEval)
MCor=corrcoef(yHat,testMat[:,1],rowvar=0)[0,1]
print("模型树拟合相关性 = ", RCor)

#使用标准线性回归模型
ws,X,Y=regTrees.linearSolve(trainMat)
m,n=shape(testMat)
yHat=zeros((m,1))
for i in range(m):
    yHat[i]=testMat[i,0]*ws[1,0]+ws[0,0]
    
LCor=corrcoef(yHat,testMat[:,1],rowvar=0)[0,1]
print("线性回归拟合相关性 = ", LCor)

相关文章

  • 随机森林和决策树(DecisionTree & RandomFo

    决策树 - 基于CART的决策树 CART分类回归树(classification and regression ...

  • XGBoost详解

    Prerequisite: CART回归树 CART回归树是假设树为二叉树,通过不断将特征进行分裂。比如当前树结点...

  • 【机器学习实战】第9章 树回归

    第9章 树回归 树回归 概述 我们本章介绍 CART(Classification And Regression ...

  • 数据分析03 - 决策树

    标签(空格分隔): 数据分析 CART 创建决策树做分类 分类树如下: CART 回归树做预测

  • CART 分类与回归树

    本文结构: CART算法有两步 回归树的生成 分类树的生成 剪枝 CART - Classification an...

  • xgboost slide(二)

    这部分主要是介绍回归树和组合: 回归树(cart)1、回归树(也可以叫做分类回归树),加入gbdt是回归树,但是根...

  • Cart 回归树

    代码来自《机器学习实战一书》;代码已经由github的wzy6642整理成python3版本:https://gi...

  • CART树

    CART(classification and regression tree)算法是分类回归树算法,它是决策树的...

  • 机器学习 - 决策树算法[二]

    1. CART决策树 分类与回归树(classification and regression tree, CAR...

  • 树回归

    CART算法(分类回归树) 可以用来分类,也可以用来回归 回归树 回归树与分类树的思路类似,但叶节点的数据类型不是...

网友评论

      本文标题:Cart 回归树

      本文链接:https://www.haomeiwen.com/subject/nesaurtx.html