美文网首页
卷积神经网络

卷积神经网络

作者: Jasmine晴天和我 | 来源:发表于2019-12-03 18:25 被阅读0次

第七章 卷积神经网络

卷积层(Convolution Layer)

卷积神经网络(Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

卷积神经网络又是怎样解决这个问题的呢?主要有三个思路:

  • 局部连接:这个是最容易想到的,每个神经元不再和上一层的所有神经元相连,而只和一小部分神经元相连。这样就减少了很多参数。
  • 权值共享:一组连接可以共享同一个权重,而不是每个连接有一个不同的权重,这样又减少了很多参数。
  • 下采样:可以使用Pooling来减少每层的样本数,进一步减少参数数量,同时还可以提升模型的鲁棒性。

在使用CNN提取特征时,到底使用哪一层的输出作为最后的特征呢?

答:倒数第二个全连接层的输出才是最后我们要提取的特征,也就是最后一个全连接层的输入才是我们需要的特征。

全连接层会忽视形状。卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。

CNN中,有时将卷积层的输入输出数据称为特征图(feature map)。其中,卷积层的输入数据称为输入特征图(input feature map)输出数据称为输出特征图(output feature map)。

卷积运算

卷积层进行的处理就是卷积运算。卷积运算相当于图像处理中的“滤波器运算”。

滤波器相当于权重或者参数,滤波器数值都是学习出来的。卷积层实现的是垂直边缘检测

边缘检测实际就是将图像由亮到暗进行区分,即边缘的过渡(edge transitions)。


image.png image.png

卷积层对应到全连接层,左上角经过滤波器,得到的3,相当于一个神经元输出为3.然后相当于,我们把输入矩阵拉直为36个数据,但是我们只对其中的9个数据赋予了权重。

image.png

步幅为1 ,移动一个,得到一个1,相当于另一个神经单元的输出是1.

并且使用的是同一个滤波器,对应到全连接层,就是权值共享。

image.png image.png

在这个例子中,输入数据是有高长方向的形状的数据,滤波器也一样,有高长方向上的维度。假设用(height, width)表示数据和滤波器的形状,则在本例中,输入大小是(4, 4),滤波器大小是(3, 3),输出大小是(2, 2)。另外,有的文献中也会用“核”这个词来表示这里所说的“滤波器”。

对于输入数据,卷积运算以一定间隔滑动滤波器的窗口并应用。这里所说的窗口是指图7-4中灰色的3 × 3的部分。如图7-4所示,将各个位置上滤
波器的元素和输入的对应元素相乘,然后再求和(有时将这个计算称为乘积累加运算)。然后,将这个结果保存到输出的对应位置。将这个过程在所有位置都进行一遍,就可以得到卷积运算的输出。

image.png

CNN中,滤波器的参数就对应之前的权重。并且,CNN中也存在偏置。

image.png

填充

在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充(padding),是卷积运算中经常会用到的处理。比如,在图7-6的例子中,对大小为(4, 4)的输入数据应用了幅度为1的填充。“幅度为1的填充”是指用幅度为1像素的0填充周围。

image.png

步幅

应用滤波器的位置间隔称为步幅(stride)

image.png

假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填充为P,步幅为S。
OH=\frac {H+2P-FH}{S}+1

OW=\frac {W+2P-FW}{S}+1

但是所设定的值必须使式(7.1)中的 和 分别可以除尽。当输出大小无法除尽时(结果是小数时),需要采取报错等对策。顺便说一下,根据深度学习的框架的不同,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续运行。

3维数据的卷积运算

之前的卷积运算的例子都是以有高、长方向的2维形状为对象的。但是,图像是3维数据,除了高、长方向之外,还需要处理通道方向。

在3维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值。

因此,作为4维数据,滤波器的权重数据要按(output_channel, input_channel, height, width)的顺序书写。比如,通道数为3、大小为5 × 5的滤
波器有20个时,可以写成(20, 3, 5, 5)。

对于每个通道,均使用自己的权值矩阵进行处理,输出时将多个通道所输出的值进行加和即可。

批处理

卷积运算的批处理,需要将在各层间传递的数据保存为4维数据。具体地讲,就是按(batch_num, channel, height, width)的顺序保存数据。

这里需要注意的是,网络间传递的是4维数据,对这N个数据进行了卷积运算。也就是说,批处理将N次的处理汇总成了1次进行。

池化层(Pooling层)

池化是缩小高、长方向上的空间的运算。比如,如图7-14所示,进行将2 × 2的区域集约成1个元素的处理,缩小空间大小。

image.png

图7-14的例子是按步幅2进行2 × 2的Max池化时的处理顺序。“Max池化”是获取最大值的运算,“2 × 2”表示目标区域的大小。如图所示,从
2 × 2的区域中取出最大的元素。此外,这个例子中将步幅设为了2,所以2 × 2的窗口的移动间隔为2个元素。另外,一般来说,池化的窗口大小会和步幅设定成相同的值。比如,3 × 3的窗口的步幅会设为3,4 × 4的窗口的步幅会设为4等。

除了Max池化之外,还有Average池化等。相对于Max池化是从目标区域中取出最大值,Average池化则是计算目标区域的平均值。在图像识别领域,主要使用Max池化。因此,本书中说到“池化层”时,指的是Max池化。

池化层的特征
池化层有以下特征。
没有要学习的参数
池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。
通道数不发生变化
经过池化运算,输入数据和输出数据的通道数不会发生变化。如图7-15所示,计算是按通道独立进行的。

对微小的位置变化具有鲁棒性(健壮)
​ 输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。比如,3 × 3的池化的情况下,如图
​ 7-16所示,池化会吸收输入数据的偏差(根据数据的不同,结果有可能不一致)。

image.png

经过卷积层和池化层之后,进行Flatten,然后丢到全连接前向传播神经网络。

image.png image.png image.png

(找到一张图片使得某个filter响应最大。相当于filter固定,未知的是输入的图片。)未知的是输入的图片???

k是第k个filter,x是我们要找的参数。?这里我不是很明白。我得理解应该是去寻找最具有代表性的特征。

image.png image.png

卷积层和池化层的实现

4维数组

x = np.random.rand(10,1,28,28)#对应10个高为28、长为28、通道为1的数据。

基于im2col的展开

def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    """

    Parameters
    ----------
    input_data : 由(数据量, 通道, 高, 长)的4维数组构成的输入数据
    filter_h : 滤波器的高
    filter_w : 滤波器的长
    stride : 步幅
    pad : 填充

    Returns
    -------
    col : 2维数组
    """
    N, C, H, W = input_data.shape
    out_h = (H + 2*pad - filter_h)//stride + 1
    out_w = (W + 2*pad - filter_w)//stride + 1

    img = np.pad(input_data, [(0,0), (0,0), (pad, pad), (pad, pad)], 'constant')#填充数组
    col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride*out_h
        for x in range(filter_w):
            x_max = x + stride*out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N*out_h*out_w, -1)
    return col
import sys, os
sys.path.append(os.pardir)
from common.util import im2col
x1 = np.random.rand(1, 3, 7, 7)
col1 = im2col(x1, 5, 5, stride=1, pad=0)
print(col1.shape) # (9, 75)
x2 = np.random.rand(10, 3, 7, 7) # 10个数据
col2 = im2col(x2, 5, 5, stride=1, pad=0)
print(col2.shape) # (90, 75)

使用im2col来实现卷积层

class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride #步幅
        self.pad = pad #填充
    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = int(1 + (H + 2*self.pad - FH) / self.stride)
        out_w = int(1 + (W + 2*self.pad - FW) / self.stride)
        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T # 滤波器的展开
        out = np.dot(col, col_W) + self.b
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)
        return out
image.png

卷积层的参数是需要学习的,但是池化层没有参数需要学习。全连接层的参数需要训练得到。

池化层不需要训练参数。全连接层的参数最多。卷积核的个数逐渐增多。激活层的size,逐渐减少。

最大池化只是计算神经网络某一层的静态属性,没有什么需要学习的,它只是一个静态属性

image.png

像这样展开之后,只需对展开的矩阵求各行的最大值,并转换为合适的形状即可(图7-22)。

image.png
class Pooling:
    def __init__(self, pool_h, pool_w, stride=1, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad
    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)
        # 展开(1)
        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h*self.pool_w)
        # 最大值(2)
        out = np.max(col, axis=1)
        # 转换(3)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)
        return out
    
    
"""
1.展开输入数据。
2.求各行的最大值。
3.转换为合适的输出大小。
"""

CNN的实现

参数
• input_dim ― 输入数据的维度:( 通道,高,长 )
• conv_param ― 卷积层的超参数(字典)。字典的关键字如下:
filter_num ― 滤波器的数量
filter_size ― 滤波器的大小
stride ― 步幅
pad ― 填充
• hidden_size ― 隐藏层(全连接)的神经元数量
• output_size ― 输出层(全连接)的神经元数量
• weitght_int_std ― 初始化时权重的标准差

import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
from common.gradient import numerical_gradient


class SimpleConvNet:
    """简单的ConvNet

    conv - relu - pool - affine - relu - affine - softmax
    
    Parameters
    ----------
    input_size : 输入大小(MNIST的情况下为784)
    hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100])
    output_size : 输出大小(MNIST的情况下为10)
    activation : 'relu' or 'sigmoid'
    weight_init_std : 指定权重的标准差(e.g. 0.01)
        指定'relu'或'he'的情况下设定“He的初始值”
        指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值”
    """
    def __init__(self, input_dim=(1, 28, 28), 
                 conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        """学习所需的参数是第1层的卷积层和剩余两个全连接层的权重和偏置。
将这些参数保存在实例变量的 params 字典中。"""
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * \
                            np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
                            np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
                                           conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()
        """从最前面开始按顺序向有序字典( OrderedDict )的 layers 中添加层。只
有最后的 SoftmaxWithLoss 层被添加到别的变量 lastLayer 中。"""

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        """求损失函数
        参数x是输入数据、t是教师标签
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)
"""在求损失函数的 loss
方法中,除了使用 predict 方法进行的 forward 处理之外,还会继续进行
forward 处理,直到到达最后的 SoftmaxWithLoss 层。"""
    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        acc = 0.0
        
        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt) 
        
        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        """求梯度(数值微分)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def gradient(self, x, t):
        """求梯度(误差反向传播法)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
        grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads
        
    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

具有代表性的CNN

LeNet

LeNet在1998年被提出,是进行手写数字识别的网络。如图7-27所示,它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。

image.png

和“现在的CNN”相比,LeNet有几个不同点。第一个不同点在于激活函数。LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。
此外,原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。

AlexNet

在LeNet问世20多年后,AlexNet被发布出来。AlexNet是引发深度学习热潮的导火线,不过它的网络结构和LeNet基本上没有什么不同,如图7-28所示。

image.png

AlexNet叠有多个卷积层和池化层,最后经由全连接层输出结果。虽然结构上AlexNet和LeNet没有大的不同,但有以下几点差异。
• 激活函数使用ReLU。
• 使用进行局部正规化的LRN(Local Response Normalization)层。
• 使用Dropout

TF2.0实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        #卷积层
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目,滤波器的数目
            kernel_size=[5, 5],     # 感受野大小,滤波器大小
            padding='same',         # padding策略(vaild 或 same) 填充策略
            activation=tf.nn.relu   # 激活函数
        )
        #池化层,最大池化
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        #第二个卷积层
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2) #第二个池化层
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,)) #进行flatten,拉直
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu) #将拉直后的丢入到全连接层
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)#全连接层后还要进行softmax
        return output
image.png

valid意味着不填充,same是填充
or the SAME padding, the output height and width are computed as:

out_height = ceil(float(in_height) / float(strides[1]))

out_width = ceil(float(in_width) / float(strides[2]))

And

For the VALID padding, the output height and width are computed as:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))

out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
因此,我们可以设定 padding 策略。在 tf.keras.layers.Conv2D 中,当我们将 padding 参数设为 same 时,会将周围缺少的部分使用 0 补齐,使得输出的矩阵大小和输入一致。

相关文章

  • CS231n 卷积神经网络: 架构, 卷积/池化层(上)

    卷积神经网络: 架构, 卷积/池化层(上) 卷积神经网络: 架构, 卷积/池化层(上) 卷积神经网络(CNNs/C...

  • 视觉

    卷积神经网络整理 各种卷积神经网络变形

  • datawhale-task05(卷积神经网络基础;leNet;

    卷积神经网络基础 LeNet和其他进阶卷积神经网络

  • 卷积神经网络

    第七章 卷积神经网络 卷积层(Convolution Layer) 卷积神经网络(Convolutional Ne...

  • 再战机器学习—卷积神经网络

    卷积神经网络 卷积神经网络可能是离我们最近的神经网络,遍布在计算机视觉应用。通常卷积神经网络是由卷积层、池化层和全...

  • 卷积神经网络

    卷积神经网络   卷积神经网络(Convolutional Neural Network,CNN或ConvNet)...

  • 二维卷积运算

    卷积神经网络是含有卷积层(convolutional layer)的神经网络。本章中卷积神经网络均使用最常见的二维...

  • CNN

    参考:CNN卷积神经网络原理讲解+图片识别应用(附源码)卷积神经网络 – CNN深入学习卷积神经网络(CNN)的原...

  • CNN基本算子与操作

    卷积神经网络(Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络...

  • 卷积层(Convolution Layer)

    卷积神经网络(Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络...

网友评论

      本文标题:卷积神经网络

      本文链接:https://www.haomeiwen.com/subject/pbhhgctx.html