美文网首页
三 Kafka生产者分区策略,Java API

三 Kafka生产者分区策略,Java API

作者: overflowedstack | 来源:发表于2021-03-26 20:47 被阅读0次

Kafka生产者

1. 分区策略
1.1 分区的原因

(1) 方便在集群中扩展,提高集群的负载能力
(2) 可以提高并发,以Partition为单位读写

1.2 生产者角度,分区的原则

我们需要将producer发送的数据封装成一个ProducerRecord对象。

ProducerRecord(@NotNull String topic, Integer partition, Long timestamp, String key, String value, @Nullable Iterable<Header> headers)

ProducerRecord(@NotNull String topic, Integer partition, Long timestamp, String key, String value)

ProducerRecord(@NotNull String topic, Integer partition, String key, String value, @Nullable Iterable<Header> headers)

ProducerRecord(@NotNull String topic, Integer partition, String key, String value)

ProducerRecord(@NotNull String topic, String key, String value)

ProducerRecord(@NotNull String topic, String value)

(1)指明partition的情况下,直接将指明的值作为partition值;
(2)没有指明partition值,但有key的情况下,将key的hash值与topic的partition数目进行取余操作,得到partition值;
(3)即没有partition值,又没有key的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与topic可用的partition总数取余得到partition值,也就是常说的round-robin

2. 生产者的数据可靠性保证

2.1 ISR (In-sync Replica)
Leader维护了一个动态的ISR,指的是和Leader保持同步的follower集合。
Leader发生故障后,就会从ISR中选举新的leader。

选哪些follower进ISR呢?replica.lag.time.max.ms
低版本用还同时用replica.lag.max.messages(最大的时间延迟)来选择follower,在高版本被移除了。因为生产者可以按batch发送消息。如果batch数量大于replica.lag.max.messages数量,会造成isr频繁地移入移出,还需要频繁操作zk。

producer发送消息,topic的每个partition收到数据后,都需要向producer发送ack,如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。

其中partition的leader收到数据后,需要通知ISR中的follower来同步数据,同步完成之后,follower给leader发消息,leader再ack给producer。

Kafka提供了三种可靠性级别:

  • acks = 0: producer不需要等待broker的ack。broker一接收到还没写入磁盘就已经返回,当broker故障时有可能丢失数据;
  • acks = 1: 只等待leader的ack,如果在follower同步完成以前发生故障,则可能丢失数据;
  • acks = -1(all):等待partition的leader和follower(isr)全部存好消息再返回ack。但是如果在follower同步完成之后,broker发送ack之前,leader发生故障,会造成数据重复。

ack解决的是数据丢不丢的问题。

2.2 故障处理细节
HW (High Watermark):记录了一个特定的消息偏移量,消费者只能拉取到这个offset之前的消息。
LEO (Log End Offset):标识当前日志下一条待写入消息的位移。

follower故障:follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截掉,从HW开始向leader进行同步。等该follower的LEO大于等于该partition的HW,就可以重新加入ISR了。
leader故障:leader故障后,从ISR中选出一个新的leader。其余follower将各自log文件高于HW的部分截掉,然后从新的leader同步数据。

3. Exactly Once 精准一次性

At most once:ack = 0
At least once:ack = -1

enable.idompotence
能解决单次会话,单个分区的问题

Java API实现生产者

1.普通生产者
package com.examples.kafka_producer;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

public class MyProducer {
    public static void main(String[] args) throws ClassNotFoundException {
        //1. 创建生产者的配置信息
        Properties properties = new Properties();
        
        properties.put("bootstrap.servers", "localhost:9092");
        properties.put("acks", "all");
        properties.put("retries", 3);
        
        properties.put("batch.size", 16384);
        properties.put("linger.ms", 1);
        properties.put("buffer.memory", 33554432);
        properties.put("key.serializer", StringSerializer.class);
        properties.put("value.serializer", StringSerializer.class);
        
        KafkaProducer<String, String> producer = new KafkaProducer<String, String>(properties);
        
        for (int i = 0; i < 10; i++)
            producer.send(new ProducerRecord<String, String>("test",i + " from Java MyProducer"));
        
        producer.close();
    }
}
2. 带回调函数的生产者
package com.examples.kafka_producer;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

public class MyProducer {
    public static void main(String[] args) throws ClassNotFoundException {
        //1. 创建生产者的配置信息
        Properties properties = new Properties();
        
        properties.put("bootstrap.servers", "localhost:9092");
        properties.put("acks", "all");
        properties.put("retries", 3);
        
        properties.put("batch.size", 16384);
        properties.put("linger.ms", 1);
        properties.put("buffer.memory", 33554432);
        properties.put("key.serializer", StringSerializer.class);
        properties.put("value.serializer", StringSerializer.class);
        
        KafkaProducer<String, String> producer = new KafkaProducer<String, String>(properties);
        
        for (int i = 0; i < 10; i++)
            producer.send(new ProducerRecord<String, String>("test",i + " from Java MyProducer"));
        
        producer.close();
    }
}
3. 自定义生产者分区策略
package com.examples.partitioner;

import java.util.Map;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

public class MyPartitioner implements Partitioner{

    public void configure(Map<String, ?> configs) {
        // TODO Auto-generated method stub
    }

    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        int cnt = cluster.partitionCountForTopic(topic);
        
        return key.toString().hashCode() % cnt;
    }

    public void close() {
        // TODO Auto-generated method stub
        
    }

}
package com.examples.kafka_producer;

import java.util.Properties;

import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringSerializer;

public class PartitionProducer {
    public static void main(String[] args) throws ClassNotFoundException {
        //1. 创建生产者的配置信息
        Properties properties = new Properties();
        
        properties.put("bootstrap.servers", "localhost:9092");
        properties.put("key.serializer", StringSerializer.class);
        properties.put("value.serializer", StringSerializer.class);
        
        properties.put("partitioner.class", "com.examples.partitioner.MyPartitioner");
        
        KafkaProducer<String, String> producer = new KafkaProducer<String, String>(properties);
        
        for (int i = 0; i < 10; i++)
            producer.send(new ProducerRecord<String, String>("test", "key" + i, i + " from Java PartitionProducer"),
                    new Callback() {

                        public void onCompletion(RecordMetadata metadata, Exception exception) {
                            if (exception == null) {
                                System.out.println(metadata.partition() + "--" + metadata.offset());
                            } else {
                                exception.printStackTrace();
                            }
                        }
                
            });
        
        producer.close();
    }
}
4. 默认生产者分区策略
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.clients.producer.internals;

import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;

/**
 * The default partitioning strategy:
 * <ul>
 * <li>If a partition is specified in the record, use it
 * <li>If no partition is specified but a key is present choose a partition based on a hash of the key
 * <li>If no partition or key is present choose a partition in a round-robin fashion
 */
public class DefaultPartitioner implements Partitioner {

    private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap<>();

    public void configure(Map<String, ?> configs) {}

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param key The key to partition on (or null if no key)
     * @param keyBytes serialized key to partition on (or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {
            int nextValue = nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (availablePartitions.size() > 0) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return availablePartitions.get(part).partition();
            } else {
                // no partitions are available, give a non-available partition
                return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {
            // hash the keyBytes to choose a partition
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }

    private int nextValue(String topic) {
        AtomicInteger counter = topicCounterMap.get(topic);
        if (null == counter) {
            counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
            AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter);
            if (currentCounter != null) {
                counter = currentCounter;
            }
        }
        return counter.getAndIncrement();
    }

    public void close() {}

}

相关文章

  • 三 Kafka生产者分区策略,Java API

    Kafka生产者 1. 分区策略 1.1 分区的原因 (1) 方便在集群中扩展,提高集群的负载能力(2) 可以提高...

  • 图解Kafka消费者分区分配策略

    1. 分配策略的作用 我们在分析生产者的时候有专门写过文章分析生产者的分区分配策略 Kafka生产者的3种分区策略...

  • 数据写入kafka的分区策略

    众所周知,kafka有分区的概念,生产者写入数据到kafka,涉及到数据到底写到哪个分区?kafka api提供了...

  • kafka发送消息分区选择策略

    发送kafka:(版本0.10.11) kafka 生产者发送消息分区选择策略 通过跟踪send方法,发现Kafk...

  • 四、Kafka API实战

    4.1 环境准备 4.2 Kafka生产者Java API 4.2.1 创建生产者(过时的API) 4.2.2 创...

  • kafka 基础知识大全

    本文包括kafka的定义、安装、启动、架构、工作流程、原理、生产者、消费者、分区、ISR节点、HW、分区分配策略、...

  • Kafka 客户端生产者使用详解(Java)

    本文将从使用 Kafka 的 Java 客户端生产者入手,剖析 Producer API 是如何向 Kafka 集...

  • kafka理解

    kafka生产者、消费者与分区的分配关系 生产者如何传输到分区消费者如何从分区读取生产者、消费者与分区的关系 主题...

  • Kafka生产者的消息分区策略

    问题:有哪些分区策略/分区算法? 分区策略的定义:决定生产者将消息发送到哪个分区的算法。 1. 轮询策略/顺序分配...

  • Kafka 消费者的分配策略

    这里要与 Kafka 生产者的分区规则区分开。 生产者的分区规则指的是:生产者在生产数据过程中,一个Topic有多...

网友评论

      本文标题:三 Kafka生产者分区策略,Java API

      本文链接:https://www.haomeiwen.com/subject/psfdcltx.html