美文网首页spark
spark读取kafka文件写入hive

spark读取kafka文件写入hive

作者: chen_666 | 来源:发表于2020-05-05 20:57 被阅读0次

1.将hdfs-site,core-site.hive-site文件拷贝到resources目录下

image.png

2.添加maven依赖

<dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-jdbc</artifactId>
            <version>1.2.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-service</artifactId>
            <version>1.2.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.27</version>
        </dependency>
    </dependencies>

3.编写代码

object KafkaDemo {

  def main(args: Array[String]): Unit = {

    //1.创建 SparkConf 并初始化 SSC
    val sparkConf: SparkConf = new SparkConf()
      .setMaster("local[*]")
      .setAppName("KafkaSparkStreaming")
    val ssc = new StreamingContext(sparkConf, Seconds(20))

    //2.定义 kafka 参数
    val brokers = "s201:9092"
    val consumerGroup = "spark"

    //3.将 kafka 参数映射为 map
    val kafkaParams = Map[String, String](
      "bootstrap.servers" -> brokers,
      "group.id" -> consumerGroup,
      "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
      "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
    )
    //要监听的Topic,可以同时监听多个
    val topics = Array("student")
    //4.通过 KafkaUtil 创建 kafkaDSteam
    val dstream = KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams))
    

    dstream.foreachRDD(rdd => {
      //获取到分区和偏移量信息
      val ranges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      val events: RDD[Some[String]] = rdd.map(x => {
        val data = x.value()
        Some(data)
      })
     
      val warehouseLocation = "spark-warehouse"
      val spark = SparkSession
        .builder()
        .appName("Spark Hive Example")
        .enableHiveSupport()
        .config("spark.sql.warehouse.dir", warehouseLocation)
        .config("user.name", "hadoop")
        .config("HADOOP_USER_NAME", "hive")
        .getOrCreate()
      
      import spark.sql
      //配置hive支持动态分区
      sql("set hive.exec.dynamic.partition=true")
      //配置hive动态分区为非严格模式
      sql("set hive.exec.dynamic.partition.mode=nonstrict")

      //如果将数据转换为Seq(xxxx),然后倒入隐式转换import session.implicalit._  是否能实现呢,答案是否定的。
      //构建row
      val dataRow = events.map(line => {
        val temp = line.get.split("###")
        Row(temp(0), temp(1), temp(2))
      })

      //"deviceid","code","time","info","sdkversion","appversion"
      //确定字段的类别
      val structType = StructType(Array(
        StructField("name", StringType, true),
        StructField("age", StringType, true),
        StructField("major", StringType, true)
      ))
      //构建df
      val df = spark.createDataFrame(dataRow, structType)

      val unit = df.createOrReplaceTempView("jk_device_info")

      val frame = sql("insert into myhive.student select * from jk_device_info")

    })
      //6.启动 SparkStreaming
      ssc.start()
      ssc.awaitTermination()
  }
}

启动hadoop,zookeeper,kafka

/opt/module/hadoop-2.7.2/sbin/start-dfs.sh
/opt/module/hadoop-2.7.2/sbin/start-yarn.sh

zk.sh start

#! /bin/bash
case $1 in
"start"){
    for i in s201 s202 s203
    do
        ssh $i "/opt/module/zookeeper-3.4.10/bin/zkServer.sh start"
    done
};;
"stop"){
    for i in s201 s202 s203
    do
        ssh $i "/opt/module/zookeeper-3.4.10/bin/zkServer.sh stop"
    done
};;
"status"){
    for i in s201 s202 s203
    do
        ssh $i "/opt/module/zookeeper-3.4.10/bin/zkServer.sh status"
    done
};;
esac

kf.sh start

#! /bin/bash
case $1 in
"start"){
        for i in s201 s202 s203
        do
                echo " --------启动 $i Kafka-------"
                # 用于KafkaManager监控
                ssh $i "export JMX_PORT=9988 && /opt/module/kafka/bin/kafka-server-start.sh -daemon /opt/modu
le/kafka/config/server.properties "        done
};;
"stop"){
        for i in s201 s202 s203
        do
                echo " --------停止 $i Kafka-------"
                ssh $i "/opt/module/kafka/bin/kafka-server-stop.sh stop"
        done
};;
esac

kafka发送消息

bin/kafka-console-producer.sh --broker-list s201:9092 --topic student

xiekai###24###ningdu

hive中查看是否是否插入

xiekain 24 ningdu


image.png

插入成功

注意,运行是可能会报HDFS的权限问题,所以需要加入运行时参数

image.png

相关文章

网友评论

    本文标题:spark读取kafka文件写入hive

    本文链接:https://www.haomeiwen.com/subject/pyevghtx.html