LruCache 使用及原理

作者: 总会颠沛流离 | 来源:发表于2019-04-28 21:13 被阅读9次

1. LruCache 是什么?

了解:HashMap 底层:哈希表(hashcode,equals) 线程不安全,效率高(针对key) ​
LinkedHashMap 底层: 链表(保证有序) 哈希表(hashcode,equals) ​ TreeMap 底层:红黑树 (有序:1.自然排序 2.比较器排序)

要搞清楚 LruCache 是什么之前,首先要知道 Android 的缓存策略。其实缓存策略很简单,举个例子,就是用户第一次使用网络加载一张图片后,下次加载这张图片的时候,并不会从网络加载,而是会从内存或者硬盘加载这张图片。
缓存策略分为添加、获取和删除,为什么需要删除缓存呢?因为每个设备都会有一定的容量限制,当容量满了的话就需要删除。
那什么是 LruCache 呢?其实 LRU(Least Recently Used) 的意思就是近期最少使用算法,它的核心思想就是会优先淘汰那些近期最少使用的缓存对象。

LruCache原理解析

LruCache是一个泛型类,它内部采用LinkedHashMap,并以强引用的方式存储外界的缓存对象,提供get和put方法来完成缓存的获取和添加操作。当缓存满时,LruCache会移除较早的缓存对象,然后再添加新的缓存对象。对Java中四种引用类型还不是特别清楚的读者可以自行查阅相关资料,这里不再给出介绍。

介绍源码前 先介绍LinkedHashMap一些特性

LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。

对于LinkedHashMap而言,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性

  1. Entry元素:

LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。

/**
* 双向链表的表头元素。
*/
private transient Entry<K,V> header;

 /**
 * LinkedHashMap的Entry元素。
 * 继承HashMap的Entry元素,又保存了其上一个元素
 before和下一个元素after的引用。
  */
  private static class Entry<K,V> extends 
  HashMap.Entry<K,V> {
  Entry<K,V> before, after;
  ……
  }
  1. 读取:

LinkedHashMap重写了父类HashMap的get方法,实际在调用父类getEntry()方法取得查找的元素后,再判断当排序模式accessOrder为true时,记录访问顺序,将最新访问的元素添加到双向链表的表头(这个特性保证了LRU最近最少使用),并从原来的位置删除。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。

 @Override public V get(Object key) {
   /*
    * This method is overridden to eliminate the need for a polymorphic
    * invocation in superclass at the expense of code duplication.
    */
   if (key == null) {
       HashMapEntry<K, V> e = entryForNullKey;
       if (e == null)
           return null;
       if (accessOrder)
           makeTail((LinkedEntry<K, V>) e);
       return e.value;
   }

   int hash = Collections.secondaryHash(key);
   HashMapEntry<K, V>[] tab = table;
   for (HashMapEntry<K, V> e = tab[hash & (tab.length - 1)];
           e != null; e = e.next) {
       K eKey = e.key;
       if (eKey == key || (e.hash == hash && key.equals(eKey))) {
           if (accessOrder)
               makeTail((LinkedEntry<K, V>) e);
           return e.value;
       }
   }
   return null;
  }

 /**
 * Relinks the given entry to the tail of the list. Under access ordering,
* this method is invoked whenever the value of a  pre-existing entry is
* read by Map.get or modified by Map.put.
*/
   private void makeTail(LinkedEntry<K, V> e) {
   // Unlink e
   e.prv.nxt = e.nxt;
   e.nxt.prv = e.prv;

   // Relink e as tail
   LinkedEntry<K, V> header = this.header;
   LinkedEntry<K, V> oldTail = header.prv;
   e.nxt = header;
   e.prv = oldTail;
   oldTail.nxt = header.prv = e;
   modCount++;

}
总结
LRU (Least Recently Used) 就是最近最少使用算法,LruCache当然就是依据 LRU 算法实现的缓存。简单说就是,设置好缓存大小;当缓存空间不足的时候,就把最近最少使用(也就是最长时间没有使用)的缓存项清除掉;然后提供新的缓存。

1、LruCache(HashMap+LinkedHashMap) 是基于 Lru 算法实现的一种缓存机制;
LruCache 其实使用了 LinkedHashMap 维护了强引用对象
总缓存的大小一般是可用内存的 1/8,当超过总缓存大小会删除最少使用的元
素,也就是内部 LinkedHashMap 的头部元素
当使用 get() 访问元素后,会将该元素移动到 LinkedHashMap 的尾部
2、Lru算法的原理是把近期最少使用的数据给移除掉,当然前提是当前数据的量大于设定的最大值。
3、LruCache 没有真正的释放内存,只是从 Map中移除掉数据,真正释放内存还是要用户手动释放。

归结几点
LruCache 内部使用 LinkedHashMap 实现,所以 LruCache 保存的是键值对
LruCache 本身对缓存项是强引用
LruCache 的读写是线程安全的,内部加了 synchronized。也就是 put(K key, V value) 和 get(K key) 内部有 synchronized
key 和 value 不接受 null 。所以如果 get 到了 null ,那就说明是没有缓存
Override sizeOf(K key, V value) 方法
根据需要Override entryRemoved(boolean evicted, K key, V oldValue, V newValue) 和 create(K key) 方法

源码分析

public class LruCache<K, V> {
private final LinkedHashMap<K, V> map;

/** Size of this cache in units. Not necessarily the number of elements. */
private int size;//当前缓存大小
private int maxSize;//缓存最大

private int putCount;//put次数
private int createCount;
private int evictionCount;//回收次数
private int hitCount;//命中次数
private int missCount;//没有命中次数

/**
 * @param maxSize for caches that do not override {@link #sizeOf}, this is
 *     the maximum number of entries in the cache. For all other caches,
 *     this is the maximum sum of the sizes of the entries in this cache.
 */
public LruCache(int maxSize) {
    if (maxSize <= 0) {
        throw new IllegalArgumentException("maxSize <= 0");
    }
    this.maxSize = maxSize;
    this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}

/**
 * Sets the size of the cache.
 *
 * @param maxSize The new maximum size.
 */
public void resize(int maxSize) {
    if (maxSize <= 0) {
        throw new IllegalArgumentException("maxSize <= 0");
    }

    synchronized (this) {
        this.maxSize = maxSize;
    }
    trimToSize(maxSize);
}

/**
 *  返回缓存中key对应的value,如果不存在则创建一个并返回。
 *  如果value被返回,它就会被移动到队列的头部,如果value为null或者不能被创建,方法返回nul
 */
public final V get(K key) {
    if (key == null) {
        throw new NullPointerException("key == null");
    }

    V mapValue;
    synchronized (this) {
        mapValue = map.get(key);
        if (mapValue != null) {
            hitCount++;
            return mapValue;
        }
        missCount++;
    }

    /*
     * 如果未被命中,则试图创建一个value.这将会消耗较长时间,创建过程中,
 * 如果要添加的value值和map中已有的值冲突,则释放已经创建value.
     */

    V createdValue = create(key);
    if (createdValue == null) {
        return null;
    }

    synchronized (this) {
        createCount++;
        mapValue = map.put(key, createdValue);

        if (mapValue != null) {
            // There was a conflict so undo that last put
            map.put(key, mapValue);
        } else {
            size += safeSizeOf(key, createdValue);
        }
    }

    if (mapValue != null) {
        entryRemoved(false, key, createdValue, mapValue);
        return mapValue;
    } else {
  //判断缓存是否越界
        trimToSize(maxSize);
        return createdValue;
    }
}

/**
 * 缓存key对应的value.value 会被移动至队列头部。
 * the queue.
 *
 * @return the previous value mapped by {@code key}.
 */
public final V put(K key, V value) {
    if (key == null || value == null) {
        throw new NullPointerException("key == null || value == null");
    }

    V previous;
    synchronized (this) {
        putCount++;
        size += safeSizeOf(key, value);
        previous = map.put(key, value);
        if (previous != null) {
            size -= safeSizeOf(key, previous);
        }
    }

    if (previous != null) {
        entryRemoved(false, key, previous, value);
    }

    trimToSize(maxSize);
    return previous;
}

/**
 * Remove the eldest entries until the total of remaining entries is at or
 * below the requested size.
 *
 * @param maxSize the maximum size of the cache before returning. May be -1
 *            to evict even 0-sized elements.
 */
public void trimToSize(int maxSize) {
    while (true) {
        K key;
        V value;
        synchronized (this) {
            if (size < 0 || (map.isEmpty() && size != 0)) {
                throw new IllegalStateException(getClass().getName()
                        + ".sizeOf() is reporting inconsistent results!");
            }

            if (size <= maxSize) {
                break;
            }

            Map.Entry<K, V> toEvict = map.eldest();
            if (toEvict == null) {
                break;
            }

            key = toEvict.getKey();
            value = toEvict.getValue();
            map.remove(key);
            size -= safeSizeOf(key, value);
            evictionCount++;
        }

        entryRemoved(true, key, value, null);
    }
}

/**
 * Removes the entry for {@code key} if it exists.
 *
 * @return the previous value mapped by {@code key}.
 */
public final V remove(K key) {
    if (key == null) {
        throw new NullPointerException("key == null");
    }

    V previous;
    synchronized (this) {
        previous = map.remove(key);
        if (previous != null) {
            size -= safeSizeOf(key, previous);
        }
    }

    if (previous != null) {
        entryRemoved(false, key, previous, null);
    }

    return previous;
}

/**
 * Called for entries that have been evicted or removed. This method is
 * invoked when a value is evicted to make space, removed by a call to
 * {@link #remove}, or replaced by a call to {@link #put}. The default
 * implementation does nothing.
 *
 * <p>The method is called without synchronization: other threads may
 * access the cache while this method is executing.
 *
 * @param evicted true if the entry is being removed to make space, false
 *     if the removal was caused by a {@link #put} or {@link #remove}.
 * @param newValue the new value for {@code key}, if it exists. If non-null,
 *     this removal was caused by a {@link #put}. Otherwise it was caused by
 *     an eviction or a {@link #remove}.
 */
protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {}

/**
 * Called after a cache miss to compute a value for the corresponding key.
 * Returns the computed value or null if no value can be computed. The
 * default implementation returns null.
 *
 * <p>The method is called without synchronization: other threads may
 * access the cache while this method is executing.
 *
 * <p>If a value for {@code key} exists in the cache when this method
 * returns, the created value will be released with {@link #entryRemoved}
 * and discarded. This can occur when multiple threads request the same key
 * at the same time (causing multiple values to be created), or when one
 * thread calls {@link #put} while another is creating a value for the same
 * key.
 */
protected V create(K key) {
    return null;
}

private int safeSizeOf(K key, V value) {
    int result = sizeOf(key, value);
    if (result < 0) {
        throw new IllegalStateException("Negative size: " + key + "=" + value);
    }
    return result;
}

/**
 * Returns the size of the entry for {@code key} and {@code value} in
 * user-defined units.  The default implementation returns 1 so that size
 * is the number of entries and max size is the maximum number of entries.
 *
 * <p>An entry's size must not change while it is in the cache.
 */
protected int sizeOf(K key, V value) {
    return 1;
}

/**
 * Clear the cache, calling {@link #entryRemoved} on each removed entry.
 */
public final void evictAll() {
    trimToSize(-1); // -1 will evict 0-sized elements
}

/**
 * For caches that do not override {@link #sizeOf}, this returns the number
 * of entries in the cache. For all other caches, this returns the sum of
 * the sizes of the entries in this cache.
 */
public synchronized final int size() {
    return size;
}

/**
 * For caches that do not override {@link #sizeOf}, this returns the maximum
 * number of entries in the cache. For all other caches, this returns the
 * maximum sum of the sizes of the entries in this cache.
 */
public synchronized final int maxSize() {
    return maxSize;
}

/**
 * Returns the number of times {@link #get} returned a value that was
 * already present in the cache.
 */
public synchronized final int hitCount() {
    return hitCount;
}

/**
 * Returns the number of times {@link #get} returned null or required a new
 * value to be created.
 */
public synchronized final int missCount() {
    return missCount;
}

/**
 * Returns the number of times {@link #create(Object)} returned a value.
 */
public synchronized final int createCount() {
    return createCount;
}

/**
 * Returns the number of times {@link #put} was called.
 */
public synchronized final int putCount() {
    return putCount;
}

/**
 * Returns the number of values that have been evicted.
 */
public synchronized final int evictionCount() {
    return evictionCount;
}

/**
 * Returns a copy of the current contents of the cache, ordered from least
 * recently accessed to most recently accessed.
 */
public synchronized final Map<K, V> snapshot() {
    return new LinkedHashMap<K, V>(map);
}

@Override public synchronized final String toString() {
    int accesses = hitCount + missCount;
    int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0;
    return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]",
            maxSize, hitCount, missCount, hitPercent);
}

}

相关文章

  • LruCache 使用及原理

    1. LruCache 是什么? 要搞清楚 LruCache 是什么之前,首先要知道 Android 的缓存策略。...

  • LruCache 使用及原理

    1. LruCache 是什么? 了解:HashMap 底层:哈希表(hashcode,equals) 线程不安全...

  • Android缓存原理

    本文主要内容 LruCache使用 LruCache原理 DiskLruCache使用 DiskLruCache原...

  • 面试题

    LruCache原理 LruCache 即最近最少使用内存(Least recently usage cache)...

  • LruCache 的使用及原理

    概述 LRU (Least Recently Used) 的意思就是近期最少使用算法,它的核心思想就是会优先淘汰那...

  • Android常问的面试题(二)

    (一)图片 1、图片库对比 2、LRUCache原理 LruCache是个泛型类,主要原理是:把最近使用的对象用强...

  • LruCache分析

    LruCache: LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方...

  • Android 高级面试-3:Java、同步和并发相关

    1、Java 相关 1.1 缓存相关 LruCache 的原理 DiskLruCache 的原理 LruCache...

  • (1)LruCache原理分析

    浅析LruCache原理 Android用LruCache(Least recently use Cache 意...

  • Android源码阅读之LruCache

    LruCache实现原理 介绍 LRU是最近最少使用(Least Recently Used)缓存算法。它需要跟踪...

网友评论

    本文标题:LruCache 使用及原理

    本文链接:https://www.haomeiwen.com/subject/rofsnqtx.html