堆排序

作者: Xerrard | 来源:发表于2017-05-25 23:42 被阅读31次

1. 优先队列

说堆排序之前,我们要从一种特殊的数据结构——优先队列说起。
优先队列最大的两个特征:插入元素和删除最大元素
优先队列的实现方式有很多种。
我们希望插入元素和删除最大元素的时间复杂度都能降低到最低,比如1。

数据结构 插入元素 删除最大元素
有序数组 N 1
无序数组 1 N
logN logN
理想情况 1 1

先说结论:用堆的方式来实现,可以保证插入元素和删除最大元素的时间复杂度都为logN

2. 堆

堆的定义:二叉堆,一种二叉树的结构,又分为大二叉堆和小二叉堆,我们此处主要讲大二叉堆

特点:二叉树的父节点都大于两个子节点,根节点是二叉树中最大的节点。

对于节点a[i]而言,它的父节点为a[(i-1)/2],它的子节点(如果有的话)为a[2i+1]和a[2i+2]

堆的两种关键算法

有时,我们会发现有些节点不符合二叉堆的规则,那可以使用上浮或者下沉的算法,将元素放到合适的位置上去、

上浮(针对子节点)

上浮算法:找到父节点(a[(k-1)/2]),如果比父节点大,则和父节点交换;完成一次上浮之后,继续和当前的父节点比较,直到比父节点小为止。



代码如下:

private void heap_swim(Comparable[] a, int k) {
    while (k > 0 && less(a[(k - 1) / 2], a[k])) {
        exchange(a, (k - 1) / 2, k);
        k = (k - 1) / 2;
    }
}
下沉(针对父节点)

下沉算法:找到子节点(a[2k+1]和a[2k+2])中比较大的一个,如果比子节点小,则和子节点交换;完成一次下沉后,继续与当前的子节点比较,直到比子节点大为止。



代码如下

private void heap_sink(Comparable[] a, int k, int n) {
    while ((2 * k + 1) < n) {
        int j = 2 * k + 1; 
        if ((j < n) && less(a[j], a[j + 1])) {
                j = j + 1; 
        }
        if (less(a[k], a[j])) {
            exchange(a, k, j);
            k = j;
        } else {
            break;
        }
    }
}

堆的操作

堆的初始化

堆的初始化有两套方案:

  1. 顺序从左到右对每个元素进行上浮操作(把每个元素都当成新插入的元素)。由于第1个元素(a[0])开始并没有根节点,所以,循环可以从第二个元素(a[1])开始
for (int k = 1; k < a.length; k++){
    heap_swim(a, k);
}
  1. 逆序从右往左对每个元素进行下沉操作。由于节点a[(n-1)/2]之后的节点都是子节点,所以循环可以从a[(n-1)/2]开始
for (int k = (n - 1) / 2; k >= 0; k--) {
    heap_sink(a, k, n);
}

下沉算法的方案相对循环较少,一般堆的初始化都是采用方案二。

堆插入元素

堆的插入元素过程就是一个元素上浮的过程

堆删除最大元素

堆的删除最大元素分两步:

  1. 将根节点元素与最后一个子节点元素交换,然后删除最后一个节点,
  2. 根节点元素下沉


堆排序

前面已经搞清楚了优先队列,又搞清楚了堆的结构,以及堆的上浮和下沉算法。下面我们就来研究堆排序了。

堆排序的步骤:

  1. 将数组中的数据初始化为二叉堆(一般使用下沉算法来实现)
  2. 取出二叉堆的根节点并和数组尾节点交换,这样最大值就放到了a[n-1]。
  3. 现在a[0]不符合二叉堆的规则,使用下沉算法将a[0]的元素放到合适的节点。然后取出最大值放到a[n-2]
  4. 依次循环2.3步,直到所有二叉堆中所有元素取完。
private void heap_sort(Comparable[] a) {
    int n = a.length - 1;
    for (int k = (n - 1) / 2; k >= 0; k--) {
        heap_sink(a, k, n);
    }
    while (n > 0) {
        exchange(a, 0, n--);
        heap_sink(a, 0, n);
    }
}

堆排序的时间复杂度:nLgN

参考资料:《算法 第四版》

相关文章

  • 堆排序

    目录 1.堆排序介绍 2.堆排序图文说明 3.堆排序的时间复杂度和稳定性 4.堆排序实现 堆排序介绍 堆排序(He...

  • 堆排序---基础篇

    本文主要介绍堆排序的一些基本过程和分析。 大纲 堆排序简介 堆排序代码实现 1. 堆排序简介 1.1 堆排序的存储...

  • 堆和堆排序

    最小K个数 堆排序 堆排序

  • JS实现堆排序

    原理 堆排序原理 实现 说明 堆排序对大文件很有效 堆排序是不稳定排序

  • iOS算法总结-堆排序

    iOS算法总结-堆排序 iOS算法总结-堆排序

  • 堆排序

    转载:图解排序算法(三)之堆排序 预备知识 堆排序 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选...

  • 排序

    原创 堆排序: 使用visit数组从本质出发获取大顶堆排序。

  • 堆排序

    堆排序

  • C++基础入门之模板堆排序(上):模板上的list的创造与操作

    整段源码链接C++的模板元堆排序 要点 组建数据结构list 组建对list的各种基本操作 堆排序中组建堆排序个个...

  • 3.2-选择排序-堆排序

    参考链接 选择排序:堆排序(Heap Sort) 白话经典算法系列之七 堆与堆排序 堆排序与快速排序,归并排序一样...

网友评论

      本文标题:堆排序

      本文链接:https://www.haomeiwen.com/subject/rxctfxtx.html