美文网首页
hdfs中如何扛住高并发的海量请求的简单实现

hdfs中如何扛住高并发的海量请求的简单实现

作者: 张大壮呐 | 来源:发表于2020-04-11 23:32 被阅读0次

采用了锁细化,双缓冲的做法,让【磁盘写】转化为【内存写】,如下图

图1

伪代码

public class Demo1 {

    private volatile boolean isWaitingSync = false;/*是否等待刷盘*/
    private volatile boolean isSyncRunning = false;/*是否在写入磁盘*/
    private volatile long syncMaxTxId = 0L;/*已刷盘最大ID*/

    private DoubleBuffer doubleBuffer = new DoubleBuffer();
    private Long txId = 0L;/*记录唯一ID,初始化为0*/
    private ThreadLocal<Long> threadLocalTxId = new ThreadLocal<>();/*当前线程处理的记录id*/

    public static final long bufferCount = 50000;/*达到一定阈值进行缓冲交换*/

    /*
     * 写数据
     */
    public void writeEditLog(String content){
        synchronized (this){
            txId++;
            threadLocalTxId.set(txId);
            EditLog editLog = new EditLog(txId,content);
            doubleBuffer.write(editLog);
        }
        syncEditLog();
    }

    private void syncEditLog(){
        synchronized (this){
            if (isSyncRunning){
                Long txId = threadLocalTxId.get();
                if (syncMaxTxId >= txId){
                    return;
                }
                if (isWaitingSync){
                    return;
                }
                isWaitingSync = true;
                while (isSyncRunning){
                    try {
                        wait(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                isWaitingSync = false;
            }
            /*设定阈值,达到阈值后交换内存,防止频繁交换内存引起性能问题
            (注:这里未考虑buffer小于bufferCount的情况,认为一直有数据进入)*/
            if (doubleBuffer.memoryBuffer.size() >= bufferCount){
                doubleBuffer.change();
            }

            if (doubleBuffer.syncBuffer.size() > 0){
                syncMaxTxId = doubleBuffer.getSyncMaxTxId();
            }

            isSyncRunning = true;
        }

        doubleBuffer.flush();

        synchronized (this){
            isSyncRunning = false;
            notify();
        }
    }

    /**
     * 数据传输对象
     */
    class EditLog{
        long txId;
        String content;
        public EditLog(long txId, String content){
            this.txId = txId;
            this.content = content;
        }

        @Override
        public String toString() {
            return "EditLog:{txId:"+this.txId+" content:"+this.content+"}";
        }
    }

    class DoubleBuffer{
        LinkedList<EditLog> memoryBuffer = new LinkedList<>();
        LinkedList<EditLog> syncBuffer = new LinkedList<>();

        public void write(EditLog editLog){
            memoryBuffer.add(editLog);
        }

        public void change(){
            LinkedList<EditLog> temp = memoryBuffer;
            memoryBuffer = syncBuffer;
            syncBuffer = temp;
        }

        /**
         * 刷新缓冲到磁盘
         */
        public void flush(){
            if (syncBuffer.size()>0){
                for (EditLog editLog : syncBuffer){
                    //TODO 写入磁盘
                    System.out.println(Thread.currentThread().getName()+"-"+editLog);
                }
                syncBuffer.clear();
            }
        }

        public long getSyncMaxTxId(){
            return syncBuffer.getLast().txId;
        }
    }
}

测试代码

public class test {
    public static void main(String[] args){
        long begin = System.currentTimeMillis();
        final Demo1 demo1 = new Demo1();
        /**
         * 启动100个线程,每个线程写入10000条数据
         */
        for (int i=0; i<100; i++){
            Thread t = new Thread(() -> {
                for (int j=0; j<10000; j++){
                    demo1.writeEditLog("content:"+j);
                }
            });
            t.start();
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        long end = System.currentTimeMillis();
        long cost = end-begin;
        System.out.println("执行时间:"+cost);
    }
}
测试结果

总结:只用了常规的synchronized锁、notify、ThreadLocal。整理的目的是为了熟悉这种提高系统能力的做法,以便应用到其他场景。

相关文章

网友评论

      本文标题:hdfs中如何扛住高并发的海量请求的简单实现

      本文链接:https://www.haomeiwen.com/subject/tblmmhtx.html