美文网首页
从源码角度彻底分析Bitmap

从源码角度彻底分析Bitmap

作者: HardMan | 来源:发表于2021-09-29 10:23 被阅读0次

1.Bitmap的内存大小

环境

  • 手机的physical density:284
  • 原图大小:1920*1200
  • 原图存放文件夹位置:mipmap-xhdpi
    假设在上述的环境中,一张1920*1200的图片加载进内存中,它的实际宽高是多少呢,通过代码我们可以取到bitmap的宽高,结果发现实际的宽高相对于原图实际宽高是做了缩放,那么这个过程到底是什么样,想弄清楚这个问题,我们必须要从底层入手进行分析。
bitmap:width=1704;height=1065
1、Bitmap bitmap= BitmapFactory.decodeResource(getResources(),R.mipmap.hero);


2、  public static Bitmap decodeResource(Resources res, int id) {
        return decodeResource(res, id, null);
    }
3、bm = decodeResourceStream(res, value, is, null, opts);

4、decodeStream(is, pad, opts)

5、   private static Bitmap decodeStreamInternal(@NonNull InputStream is,
            @Nullable Rect outPadding, @Nullable Options opts) {
        // ASSERT(is != null);
        byte [] tempStorage = null;
        if (opts != null) tempStorage = opts.inTempStorage;
        if (tempStorage == null) tempStorage = new byte[DECODE_BUFFER_SIZE];
      //调用native方法  
        return nativeDecodeStream(is, tempStorage, outPadding, opts,
                Options.nativeInBitmap(opts),
                Options.nativeColorSpace(opts));
    }

我们从BitmaFactory.decodeResource()方法一步步跟踪进去发现,最后是调用了JNI的nativeDecodeStream方法,返回bitmap对象。


static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage,
        jobject padding, jobject options) {

    jobject bitmap = NULL;
    std::unique_ptr<SkStream> stream(CreateJavaInputStreamAdaptor(env, is, storage));

    if (stream.get()) {
        std::unique_ptr<SkStreamRewindable> bufferedStream(
                SkFrontBufferedStream::Create(stream.release(), SkCodec::MinBufferedBytesNeeded()));
        SkASSERT(bufferedStream.get() != NULL);
        bitmap = doDecode(env, bufferedStream.release(), padding, options);
    }
    return bitmap;
}
static jobject doDecode(JNIEnv* env, SkStreamRewindable* stream, jobject padding, jobject options) {
    // This function takes ownership of the input stream.  Since the SkAndroidCodec
    // will take ownership of the stream, we don't necessarily need to take ownership
    // here.  This is a precaution - if we were to return before creating the codec,
    // we need to make sure that we delete the stream.
    std::unique_ptr<SkStreamRewindable> streamDeleter(stream);

    // Set default values for the options parameters.
    int sampleSize = 1;
    bool onlyDecodeSize = false;
    SkColorType prefColorType = kN32_SkColorType;
    bool isHardware = false;
    bool isMutable = false;
    float scale = 1.0f;
    bool requireUnpremultiplied = false;
    jobject javaBitmap = NULL;
    sk_sp<SkColorSpace> prefColorSpace = nullptr;

    // Update with options supplied by the client.
    if (options != NULL) {
        sampleSize = env->GetIntField(options, gOptions_sampleSizeFieldID);
        // Correct a non-positive sampleSize.  sampleSize defaults to zero within the
        // options object, which is strange.
        if (sampleSize <= 0) {
            sampleSize = 1;
        }

        if (env->GetBooleanField(options, gOptions_justBoundsFieldID)) {
            onlyDecodeSize = true;
        }

        // initialize these, in case we fail later on
        env->SetIntField(options, gOptions_widthFieldID, -1);
        env->SetIntField(options, gOptions_heightFieldID, -1);
        env->SetObjectField(options, gOptions_mimeFieldID, 0);
        env->SetObjectField(options, gOptions_outConfigFieldID, 0);
        env->SetObjectField(options, gOptions_outColorSpaceFieldID, 0);

        jobject jconfig = env->GetObjectField(options, gOptions_configFieldID);
        prefColorType = GraphicsJNI::getNativeBitmapColorType(env, jconfig);
        jobject jcolorSpace = env->GetObjectField(options, gOptions_colorSpaceFieldID);
        prefColorSpace = GraphicsJNI::getNativeColorSpace(env, jcolorSpace);
        isHardware = GraphicsJNI::isHardwareConfig(env, jconfig);
        isMutable = env->GetBooleanField(options, gOptions_mutableFieldID);
        requireUnpremultiplied = !env->GetBooleanField(options, gOptions_premultipliedFieldID);
        javaBitmap = env->GetObjectField(options, gOptions_bitmapFieldID);

        if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
            const int density = env->GetIntField(options, gOptions_densityFieldID);
            const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
            const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
            if (density != 0 && targetDensity != 0 && density != screenDensity) {
                scale = (float) targetDensity / density;
            }
        }
    }

    if (isMutable && isHardware) {
        doThrowIAE(env, "Bitmaps with Config.HARWARE are always immutable");
        return nullObjectReturn("Cannot create mutable hardware bitmap");
    }

    // Create the codec.
    NinePatchPeeker peeker;
    std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::NewFromStream(
            streamDeleter.release(), &peeker));
    if (!codec.get()) {
        return nullObjectReturn("SkAndroidCodec::NewFromStream returned null");
    }

    // Do not allow ninepatch decodes to 565.  In the past, decodes to 565
    // would dither, and we do not want to pre-dither ninepatches, since we
    // know that they will be stretched.  We no longer dither 565 decodes,
    // but we continue to prevent ninepatches from decoding to 565, in order
    // to maintain the old behavior.
    if (peeker.mPatch && kRGB_565_SkColorType == prefColorType) {
        prefColorType = kN32_SkColorType;
    }

    // Determine the output size.
    SkISize size = codec->getSampledDimensions(sampleSize);

    int scaledWidth = size.width();
    int scaledHeight = size.height();
    bool willScale = false;

    // Apply a fine scaling step if necessary.
    if (needsFineScale(codec->getInfo().dimensions(), size, sampleSize)) {
        willScale = true;
        scaledWidth = codec->getInfo().width() / sampleSize;
        scaledHeight = codec->getInfo().height() / sampleSize;
    }

    // Set the decode colorType
    SkColorType decodeColorType = codec->computeOutputColorType(prefColorType);
    sk_sp<SkColorSpace> decodeColorSpace = codec->computeOutputColorSpace(
            decodeColorType, prefColorSpace);

    // Set the options and return if the client only wants the size.
    if (options != NULL) {
        jstring mimeType = encodedFormatToString(
                env, (SkEncodedImageFormat)codec->getEncodedFormat());
        if (env->ExceptionCheck()) {
            return nullObjectReturn("OOM in encodedFormatToString()");
        }
        env->SetIntField(options, gOptions_widthFieldID, scaledWidth);
        env->SetIntField(options, gOptions_heightFieldID, scaledHeight);
        env->SetObjectField(options, gOptions_mimeFieldID, mimeType);

        SkColorType outColorType = decodeColorType;
        // Scaling can affect the output color type
        if (willScale || scale != 1.0f) {
            outColorType = colorTypeForScaledOutput(outColorType);
        }

        jint configID = GraphicsJNI::colorTypeToLegacyBitmapConfig(outColorType);
        if (isHardware) {
            configID = GraphicsJNI::kHardware_LegacyBitmapConfig;
        }
        jobject config = env->CallStaticObjectMethod(gBitmapConfig_class,
                gBitmapConfig_nativeToConfigMethodID, configID);
        env->SetObjectField(options, gOptions_outConfigFieldID, config);

        env->SetObjectField(options, gOptions_outColorSpaceFieldID,
                GraphicsJNI::getColorSpace(env, decodeColorSpace, decodeColorType));

        if (onlyDecodeSize) {
            return nullptr;
        }
    }

    // Scale is necessary due to density differences.
    if (scale != 1.0f) {
        willScale = true;
        scaledWidth = static_cast<int>(scaledWidth * scale + 0.5f);
        scaledHeight = static_cast<int>(scaledHeight * scale + 0.5f);
    }

    android::Bitmap* reuseBitmap = nullptr;
    unsigned int existingBufferSize = 0;
    if (javaBitmap != NULL) {
        reuseBitmap = &bitmap::toBitmap(env, javaBitmap);
        if (reuseBitmap->isImmutable()) {
            ALOGW("Unable to reuse an immutable bitmap as an image decoder target.");
            javaBitmap = NULL;
            reuseBitmap = nullptr;
        } else {
            existingBufferSize = bitmap::getBitmapAllocationByteCount(env, javaBitmap);
        }
    }

    HeapAllocator defaultAllocator;
    RecyclingPixelAllocator recyclingAllocator(reuseBitmap, existingBufferSize);
    ScaleCheckingAllocator scaleCheckingAllocator(scale, existingBufferSize);
    SkBitmap::HeapAllocator heapAllocator;
    SkBitmap::Allocator* decodeAllocator;
    if (javaBitmap != nullptr && willScale) {
        // This will allocate pixels using a HeapAllocator, since there will be an extra
        // scaling step that copies these pixels into Java memory.  This allocator
        // also checks that the recycled javaBitmap is large enough.
        decodeAllocator = &scaleCheckingAllocator;
    } else if (javaBitmap != nullptr) {
        decodeAllocator = &recyclingAllocator;
    } else if (willScale || isHardware) {
        // This will allocate pixels using a HeapAllocator,
        // for scale case: there will be an extra scaling step.
        // for hardware case: there will be extra swizzling & upload to gralloc step.
        decodeAllocator = &heapAllocator;
    } else {
        decodeAllocator = &defaultAllocator;
    }

    // Construct a color table for the decode if necessary
    sk_sp<SkColorTable> colorTable(nullptr);
    SkPMColor* colorPtr = nullptr;
    int* colorCount = nullptr;
    int maxColors = 256;
    SkPMColor colors[256];
    if (kIndex_8_SkColorType == decodeColorType) {
        colorTable.reset(new SkColorTable(colors, maxColors));

        // SkColorTable expects us to initialize all of the colors before creating an
        // SkColorTable.  However, we are using SkBitmap with an Allocator to allocate
        // memory for the decode, so we need to create the SkColorTable before decoding.
        // It is safe for SkAndroidCodec to modify the colors because this SkBitmap is
        // not being used elsewhere.
        colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
        colorCount = &maxColors;
    }

    SkAlphaType alphaType = codec->computeOutputAlphaType(requireUnpremultiplied);

    const SkImageInfo decodeInfo = SkImageInfo::Make(size.width(), size.height(),
            decodeColorType, alphaType, decodeColorSpace);

    // For wide gamut images, we will leave the color space on the SkBitmap.  Otherwise,
    // use the default.
    SkImageInfo bitmapInfo = decodeInfo;
    if (decodeInfo.colorSpace() && decodeInfo.colorSpace()->isSRGB()) {
        bitmapInfo = bitmapInfo.makeColorSpace(GraphicsJNI::colorSpaceForType(decodeColorType));
    }

    if (decodeColorType == kGray_8_SkColorType) {
        // The legacy implementation of BitmapFactory used kAlpha8 for
        // grayscale images (before kGray8 existed).  While the codec
        // recognizes kGray8, we need to decode into a kAlpha8 bitmap
        // in order to avoid a behavior change.
        bitmapInfo =
                bitmapInfo.makeColorType(kAlpha_8_SkColorType).makeAlphaType(kPremul_SkAlphaType);
    }
    SkBitmap decodingBitmap;
    if (!decodingBitmap.setInfo(bitmapInfo) ||
            !decodingBitmap.tryAllocPixels(decodeAllocator, colorTable.get())) {
        // SkAndroidCodec should recommend a valid SkImageInfo, so setInfo()
        // should only only fail if the calculated value for rowBytes is too
        // large.
        // tryAllocPixels() can fail due to OOM on the Java heap, OOM on the
        // native heap, or the recycled javaBitmap being too small to reuse.
        return nullptr;
    }

    // Use SkAndroidCodec to perform the decode.
    SkAndroidCodec::AndroidOptions codecOptions;
    codecOptions.fZeroInitialized = decodeAllocator == &defaultAllocator ?
            SkCodec::kYes_ZeroInitialized : SkCodec::kNo_ZeroInitialized;
    codecOptions.fColorPtr = colorPtr;
    codecOptions.fColorCount = colorCount;
    codecOptions.fSampleSize = sampleSize;
    SkCodec::Result result = codec->getAndroidPixels(decodeInfo, decodingBitmap.getPixels(),
            decodingBitmap.rowBytes(), &codecOptions);
    switch (result) {
        case SkCodec::kSuccess:
        case SkCodec::kIncompleteInput:
            break;
        default:
            return nullObjectReturn("codec->getAndroidPixels() failed.");
    }

    jbyteArray ninePatchChunk = NULL;
    if (peeker.mPatch != NULL) {
        if (willScale) {
            scaleNinePatchChunk(peeker.mPatch, scale, scaledWidth, scaledHeight);
        }

        size_t ninePatchArraySize = peeker.mPatch->serializedSize();
        ninePatchChunk = env->NewByteArray(ninePatchArraySize);
        if (ninePatchChunk == NULL) {
            return nullObjectReturn("ninePatchChunk == null");
        }

        jbyte* array = (jbyte*) env->GetPrimitiveArrayCritical(ninePatchChunk, NULL);
        if (array == NULL) {
            return nullObjectReturn("primitive array == null");
        }

        memcpy(array, peeker.mPatch, peeker.mPatchSize);
        env->ReleasePrimitiveArrayCritical(ninePatchChunk, array, 0);
    }

    jobject ninePatchInsets = NULL;
    if (peeker.mHasInsets) {
        ninePatchInsets = env->NewObject(gInsetStruct_class, gInsetStruct_constructorMethodID,
                peeker.mOpticalInsets[0], peeker.mOpticalInsets[1],
                peeker.mOpticalInsets[2], peeker.mOpticalInsets[3],
                peeker.mOutlineInsets[0], peeker.mOutlineInsets[1],
                peeker.mOutlineInsets[2], peeker.mOutlineInsets[3],
                peeker.mOutlineRadius, peeker.mOutlineAlpha, scale);
        if (ninePatchInsets == NULL) {
            return nullObjectReturn("nine patch insets == null");
        }
        if (javaBitmap != NULL) {
            env->SetObjectField(javaBitmap, gBitmap_ninePatchInsetsFieldID, ninePatchInsets);
        }
    }

    SkBitmap outputBitmap;
    if (willScale) {
        // This is weird so let me explain: we could use the scale parameter
        // directly, but for historical reasons this is how the corresponding
        // Dalvik code has always behaved. We simply recreate the behavior here.
        // The result is slightly different from simply using scale because of
        // the 0.5f rounding bias applied when computing the target image size
        const float sx = scaledWidth / float(decodingBitmap.width());
        const float sy = scaledHeight / float(decodingBitmap.height());

        // Set the allocator for the outputBitmap.
        SkBitmap::Allocator* outputAllocator;
        if (javaBitmap != nullptr) {
            outputAllocator = &recyclingAllocator;
        } else {
            outputAllocator = &defaultAllocator;
        }

        SkColorType scaledColorType = colorTypeForScaledOutput(decodingBitmap.colorType());
        // FIXME: If the alphaType is kUnpremul and the image has alpha, the
        // colors may not be correct, since Skia does not yet support drawing
        // to/from unpremultiplied bitmaps.
        outputBitmap.setInfo(
                bitmapInfo.makeWH(scaledWidth, scaledHeight).makeColorType(scaledColorType));
        if (!outputBitmap.tryAllocPixels(outputAllocator, NULL)) {
            // This should only fail on OOM.  The recyclingAllocator should have
            // enough memory since we check this before decoding using the
            // scaleCheckingAllocator.
            return nullObjectReturn("allocation failed for scaled bitmap");
        }

        SkPaint paint;
        // kSrc_Mode instructs us to overwrite the uninitialized pixels in
        // outputBitmap.  Otherwise we would blend by default, which is not
        // what we want.
        paint.setBlendMode(SkBlendMode::kSrc);
        paint.setFilterQuality(kLow_SkFilterQuality); // bilinear filtering

        SkCanvas canvas(outputBitmap, SkCanvas::ColorBehavior::kLegacy);
        canvas.scale(sx, sy);
        canvas.drawBitmap(decodingBitmap, 0.0f, 0.0f, &paint);
    } else {
        outputBitmap.swap(decodingBitmap);
    }

    if (padding) {
        if (peeker.mPatch != NULL) {
            GraphicsJNI::set_jrect(env, padding,
                    peeker.mPatch->paddingLeft, peeker.mPatch->paddingTop,
                    peeker.mPatch->paddingRight, peeker.mPatch->paddingBottom);
        } else {
            GraphicsJNI::set_jrect(env, padding, -1, -1, -1, -1);
        }
    }

    // If we get here, the outputBitmap should have an installed pixelref.
    if (outputBitmap.pixelRef() == NULL) {
        return nullObjectReturn("Got null SkPixelRef");
    }

    if (!isMutable && javaBitmap == NULL) {
        // promise we will never change our pixels (great for sharing and pictures)
        outputBitmap.setImmutable();
    }

    bool isPremultiplied = !requireUnpremultiplied;
    if (javaBitmap != nullptr) {
        bitmap::reinitBitmap(env, javaBitmap, outputBitmap.info(), isPremultiplied);
        outputBitmap.notifyPixelsChanged();
        // If a java bitmap was passed in for reuse, pass it back
        return javaBitmap;
    }

    int bitmapCreateFlags = 0x0;
    if (isMutable) bitmapCreateFlags |= android::bitmap::kBitmapCreateFlag_Mutable;
    if (isPremultiplied) bitmapCreateFlags |= android::bitmap::kBitmapCreateFlag_Premultiplied;

    if (isHardware) {
        sk_sp<Bitmap> hardwareBitmap = Bitmap::allocateHardwareBitmap(outputBitmap);
        return bitmap::createBitmap(env, hardwareBitmap.release(), bitmapCreateFlags,
                ninePatchChunk, ninePatchInsets, -1);
    }

    // now create the java bitmap
    return bitmap::createBitmap(env, defaultAllocator.getStorageObjAndReset(),
            bitmapCreateFlags, ninePatchChunk, ninePatchInsets, -1);
}

看下面这段代码,发现通过targetDensity和density的比值得到一个scale的值,最终显示的bitmap 大小会根据这个值进行对应的缩放

        if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
            const int density = env->GetIntField(options, gOptions_densityFieldID);//图片所放文件夹对应的dpi 譬如xxh-drawable对应的dpi是480
            const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);//实际设备的dpi
            const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
            if (density != 0 && targetDensity != 0 && density != screenDensity) {
                scale = (float) targetDensity / density;
            }
        }

在BitmapFactory中对density进行初始化

    public static Bitmap decodeResourceStream(@Nullable Resources res, @Nullable TypedValue value,
            @Nullable InputStream is, @Nullable Rect pad, @Nullable Options opts) {
        validate(opts);
        if (opts == null) {
            opts = new Options();
        }

        if (opts.inDensity == 0 && value != null) {
            final int density = value.density;
            if (density == TypedValue.DENSITY_DEFAULT) {
                opts.inDensity = DisplayMetrics.DENSITY_DEFAULT;
            } else if (density != TypedValue.DENSITY_NONE) {
                opts.inDensity = density;
            }
        }
        
        if (opts.inTargetDensity == 0 && res != null) {
            opts.inTargetDensity = res.getDisplayMetrics().densityDpi;
        }
        
        return decodeStream(is, pad, opts);
    }

对上面的代码流程进行一个总结:
1.解析 java 层传递过来的 Options 的参数,如 simpleSize ,isMutable,javaBitmap 等等,同时计算出 scale 。
2.获取当前图片的大小,根据 sampleSize 判断是否需要压缩,同时计算出 scaledWidth ,scaledHeight。
3.设置 options 宽高为 scaledWidth ,scaledHeight ,如果只是解析宽高那么就直接返回,也就是 options.inJustDecodeBounds = true 时,但是这里需要注意返回的是,资源图片的宽高并不是 Bitmap 最终的宽高。(我们大部分人对这个有误解)
4.创建 native 层的 SkImageInfo 和 SkBitmap ,然后调用 tryAllocPixels 去开辟图片的内存空间,然后调用 getAndroidPixels 去解析像素值 ,这里的 decodingBitmap 也并不是最终需要返回的 Bitmap ,而是原资源图片的 Bitmap 。
5.构建需要返回的 outputBitmap ,如果需要缩放那么重新去开辟一块内存空间,如果不需要缩放直接调用 swap 方法即可。最后判断有没有复用的 JavaBitmap ,如果有复用调用 reinitBitmap 然后直接返回,如果没有则调用 createBitmap 去创建一个新的 Bitmap 。

相关文章

网友评论

      本文标题:从源码角度彻底分析Bitmap

      本文链接:https://www.haomeiwen.com/subject/wcernltx.html