美文网首页
机器学习学习笔记--朴素贝叶斯实践

机器学习学习笔记--朴素贝叶斯实践

作者: 松爱家的小秦 | 来源:发表于2017-11-30 22:40 被阅读0次

朴素贝叶斯算法是应用最为广泛的分类算法之一。简称NB算法。可以用来检测异常操作,检测DGA域名,检测针对Apache的DDos攻击,检测基于MNIST数据集的验证码。

朴素贝叶斯算法包括以下算法

高斯朴素贝叶斯算法

多项式朴素贝叶斯算法

伯努利朴素贝叶斯

1.hellobeiyesi

# coding: utf-8

from sklearn import datasets

iris = datasets.load_iris()

from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()

y_pred = gnb.fit(iris.data,iris.target).predict(iris.data)#训练并预测数据

print ("Number of mislabeled points out of total %d points : %d" % (iris.data.shape[0],(iris.target != y_pred).sum()))

2.检测异常操作

操作思路:

1.数据的搜集与清洗

2.特征化

3.训练模型

4.效果验证

检测异常操作:

# -*- coding:utf-8 -*-

import sys

import urllib

import urlparse

import re

from hmmlearn import hmm

import numpy as np

from sklearn.externals import joblib

import HTMLParser

import nltk#用来分词

import csv

import matplotlib.pyplot as plt

from nltk.probability import FreqDist

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

N = 90

def load_user_cmd_new(filename):

cmd_list=[]

dist = []

with open(filename) as f:

i=0

x=[]

for line in f:

line = line.strip('\n')

x.append(line)

dist.append(line)

i+=1

if i == 100:

cmd_list.append(x)

x=[]

i=0

fdist=FreqDist(dist).keys()

return cmd_list,fdist

def load_user_cmd(filename):

cmd_list=[]

dist_max=[]

dist_min=[]

dist=[]

with open(filename) as f:

i=0

x=[]

for line in f:

line=line.strip('\n')

x.append(line)

dist.append(line)

i+=1

if i == 100:

cmd_list.append(x)

x=[]

i=0

fdist = FreqDist(dist).keys()

dist_max = set(fdist[0:50])

dist_min = set(fdist[-50:])

return cmd_list,dist_max,dist_min

#以下是提取特征

def get_user_cmd_feature(user_cmd_list,dist_max,dist_min):

user_cmd_feature=[]

for cmd_block in user_cmd_list:

f1=len(set(cmd_block))

fdist = FreqDist(cmd_block).keys()

f2 = fdist[0:10]

f3 = fdist[-10:]

f2 = len(set(f2) & set(dist_max))

f3 = len(set(f3)&set(dist_min))

x = [f1,f2,f3]

user_cmd_feature.append(x)

return user_cmd_feature

def get_user_cmd_feature_new(user_cmd_list,dist):

user_cmd_feature=[]

for cmd_list in user_cmd_list:

v=[0]*len(dist)

for i in range(0,len(dist)):

if dist[i] in cmd_list:

v[i]+=1

user_cmd_feature.append(v)

return user_cmd_feature

def get_label(filename,index=0):

x=[]

with open(filename) as f:

for line in f:

line=line.strip('\n')

x.append(int(line.split()[index]))

return x

if __name__ == '__main__':

user_cmd_list,dist=load_user_cmd_new("/home/qin/code/python/web-ml/1book-master/data/MasqueradeDat/User3")

user_cmd_feature=get_user_cmd_feature_new(user_cmd_list,dist)

labels=get_label("/home/qin/code/python/web-ml/1book-master/data/MasqueradeDat/label.txt",2)

y=[0]*50+labels

x_train=user_cmd_feature[0:N]

y_train=y[0:N]

x_test = user_cmd_feature[N:150]

y_test = y[N:150]

neigh = KNeighborsClassifier(n_neighbors=3)

neigh.fit(x_train,y_train)

y_predict_knn=neigh.predict(x_test)

print y_train

clf = GaussianNB().fit(x_train,y_train)

y_predict_nb=clf.predict(x_test)

score=np.mean(y_test==y_predict_knn)*100

print "KNN %d " % score

score=np.mean(y_test==y_predict_nb)*100

print "NB %d" % score

结果:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

KNN 83

NB 83

2.检测WebShell

# -*- coding:utf-8 -*-

import os

from sklearn.feature_extraction.text import CountVectorizer

import sys

import numpy as np

from sklearn import cross_validation

from sklearn.naive_bayes import GaussianNB

def load_file(file_path):

t=""

with open(file_path) as f:

for line in f:

line=line.strip('\n')

t+=line

return t

def load_files(path):

files_list=[]

for r,d,files in os.walk(path):

for file in files:

if file.endswith('.php'):

file_path=path+file

print "Load %s" % file_path

t=load_file(file_path)

files_list.append(t)

return files_list

if __name__=='__main__':

webshell_bigram_vectorizer=CountVectorizer(ngram_range=(2,2),decode_error="ignore",token_pattern= r'\b\w+\b',min_df=1)

#ngram_range表明基于2-gram,ignore表示忽略异常字符的影响,token_pattern表示按单词切分

webshell_files_list=load_files("/home/qin/code/python/web-ml/1book-master/data/PHP-WEBSHELL/xiaoma/")

x1=webshell_bigram_vectorizer.fit_transform(webshell_files_list).toarray()

y1=[1]*len(x1)

vocabulary=webshell_bigram_vectorizer.vocabulary_

wp_bigram_vectorizer = CountVectorizer(ngram_range=(2,2),decode_error="ignore",token_pattern=r"\b\w+\b",min_df=1,vocabulary=vocabulary)

wp_files_list=load_files("/home/qin/code/python/web-ml/1book-master/data/wordpress/")

x2=wp_bigram_vectorizer.fit_transform(wp_files_list).toarray()

y2=[0]*len(x2)

x=np.concatenate((x1,x2))

y=np.concatenate((y1,y2))

clf = GaussianNB()

print cross_validation.cross_val_score(clf,x,y,n_jobs=-1,cv=3)

3.shell2

import os

from sklearn.feature_extraction.text import CountVectorizer

import sys

import numpy as np

from sklearn import cross_validation

from sklearn.naive_bayes import GaussianNB

r_token_pattern=r'\b\w+\b\(|\'w+\''

def load_file(file_path):

t=""

with open(file_path) as f:

for line in f:

line=line.strip('\n')

t+=line

return t

def load_files(path):

files_list=[]

for r, d, files in os.walk(path):

for file in files:

if file.endswith('.php'):

file_path=path+file

#print "Load %s" % file_path

t=load_file(file_path)

files_list.append(t)

return  files_list

if __name__ == '__main__':

webshell_bigram_vectorizer = CountVectorizer(ngram_range=(1, 1), decode_error="ignore",

token_pattern = r_token_pattern,min_df=1)

webshell_files_list=load_files("/home/qin/code/python/web-ml/1book-master/data/PHP-WEBSHELL/xiaoma")

x1=webshell_bigram_vectorizer.fit_transform(webshell_files_list).toarray()

y1=[1]*len(x1)

vocabulary=webshell_bigram_vectorizer.vocabulary_

wp_bigram_vectorizer = CountVectorizer(ngram_range=(1, 1), decode_error="ignore",

token_pattern = r_token_pattern,min_df=1,vocabulary=vocabulary)

wp_files_list=load_files("/home/qin/code/python/web-ml/1book-master/data/wordpress/")

x2=wp_bigram_vectorizer.transform(wp_files_list).toarray()

y2=[0]*len(x2)

x=np.concatenate((x1,x2))

y=np.concatenate((y1, y2))

clf = GaussianNB()

print vocabulary

print cross_validation.cross_val_score(clf,x,y,n_jobs=-1,cv=3)

相关文章

  • 机器学习实战 朴素贝叶斯

    title: 朴素贝叶斯 机器学习实战date: 2019-07-28tags: 机器学习 贝叶斯categori...

  • 朴素贝叶斯

    学习机器学习最简单的算法可以说就是 朴素贝叶斯了,今天分享下自己的学习心得。 什么是贝叶斯,什么是朴素贝叶斯 贝叶...

  • 机器学习算法收藏

    LeftNotEasy - Wangda Tan//机器学习优秀博客(5.13)朴素贝叶斯分类算法原理与实践(20...

  • 机器学习数学原理(4)——朴素贝叶斯模型

    机器学习数学原理(4)——朴素贝叶斯模型 朴素贝叶斯模型(Naive Bayes Model),是一种基于贝叶斯定...

  • 机器学习学习笔记--朴素贝叶斯实践

    朴素贝叶斯算法是应用最为广泛的分类算法之一。简称NB算法。可以用来检测异常操作,检测DGA域名,检测针对Apach...

  • 朴素贝叶斯法

    朴素贝叶斯法 朴素贝叶斯法的学习与分类 朴素贝叶斯法的参数估计 朴素贝叶斯实现 高斯朴素贝叶斯实现 使用 skle...

  • Scikit-Learn 朴素贝叶斯分类丨数析学院

    朴素贝叶斯分类是机器学习中常见的分类方法之一,本节将带大家深入学习一下 Scikit-Learn 中朴素贝叶斯分类...

  • 机器学习朴素贝叶斯学习笔记

    基本概念 朴素贝叶斯是分类算法。 数据类型:标称型。 工作原理 如果p1(x, y) > p2(x, y),类别为...

  • Task4

    传统机器学习 一、朴素贝叶斯朴素贝叶斯(naïve Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。对...

  • 统计学习方法笔记(第四章个人笔记)

    统计学习方法笔记(第四章个人笔记) 标签: 统计学习方法 朴素贝叶斯法 描述:朴素贝叶斯法是基于贝叶斯定理与特征条...

网友评论

      本文标题:机器学习学习笔记--朴素贝叶斯实践

      本文链接:https://www.haomeiwen.com/subject/wiwbbxtx.html