美文网首页生物信息学从零开始学python---生信转录组学
一行命令完成RNAseq差异分析+火山图+散点图

一行命令完成RNAseq差异分析+火山图+散点图

作者: 邓老师呦 | 来源:发表于2020-08-06 11:14 被阅读0次

今天来给大家分享的是:怎么一行命令完成RNAseq数据差异分析+火山图+散点图。

一、准备3个文件:

1、基因表达count文件:gene_count_edger.txt

格式如下:(行是基因、列是样本)

image

2、 基因表达FPKM文件:gene_exp_edger.txt

image

3、 样本分组文件:group.txt(第一列是样本、第二列是分组名)

image

二、运行代码

1、确保已经安装了R或RStudio,如果没有安装R包edgeR和ggplot2,可以先安装一下。这里使用edgeR包进行RNAseq的差异分析。

安装R包代码:

if (!requireNamespace("BiocManager")) install.packages("BiocManager")

BiocManager::install(c('edgeR'))

install.packages("ggplot2")

下载代码edgeR.R

library(edgeR)

library(ggplot2)

data <- read.table("gene_count_edger.txt",sep="\t",row.names=1,header=TRUE)

group0 <- read.table("group.txt",sep="\t",row.names=1,header=TRUE,as.is = TRUE)

exp <- read.table('gene_exp_edger.txt', sep = '\t', row.names = 1,header=TRUE)

group <- group0[,'group']

dgelist <- DGEList(counts = data, group = group)

#过滤低表达,CPM标准化

keep <- rowSums(cpm(dgelist) > 1 ) >= 2

dgelist <- dgelist[keep, ,keep.lib.sizes = FALSE]

#TMM 标准化

dgelist<- calcNormFactors(dgelist, method = 'TMM')

#估算离散值

dgelist = estimateCommonDisp(dgelist)

dgelist = estimateTagwiseDisp(dgelist)

dgelist = exactTest(dgelist)

tTag = topTags(dgelist,n=NULL)

tTag <- as.data.frame(tTag)

g1 <- unique(group)[1]

g2 <- unique(group)[2]

diff <- tTag[((tTag$logFC >= 1 | tTag$logFC <= -1) & (tTag$FDR<0.05)),]

write.csv(tTag,file = paste(g2,"_vs_",g1,"_edgeR_all.csv",sep=""))

write.csv(diff,file = paste(g2,"_vs_",g1,"_edgeR_different.csv",sep=""))

#画散点图

g1_exp = exp[rownames(tTag),rownames(group0)[which(group0$group==g1)]]

g2_exp = exp[rownames(tTag),rownames(group0)[which(group0$group==g2)]]

g1_mean = apply(g1_exp,1,mean)

g2_mean = apply(g2_exp,1,mean)

type=rep('No',length(g1_mean))

type[which(tTag$logFC > 1 & tTag$FDR < 0.05)] = "Up"

type[which(tTag$logFC < -1 & tTag$FDR < 0.05)] = "Down"

datam = data.frame(g1_mean,g2_mean,logFC=tTag$logFC,FDR=tTag$FDR,type,stringsAsFactors=FALSE)

##散点图

ggplot(datam,aes(log2(g1_mean),log2(g2_mean),colour=type))+

geom_point(stat="identity",size=1)+theme(legend.title=element_blank())+scale_color_manual(values =c("Down"='blue',"No"='grey',"Up"='orange'))+

    labs(x=paste(g1,' Log2(FPKM)'),y=paste(g2,' Log2(FPKM)'),title=paste(g2,' VS ',g1,sep=""))+

    coord_cartesian(ylim=c(-10,10),xlim=c(-10,10))+geom_segment(aes(x = -10, y = -10, xend = 10, yend = 10),size=1,colour="#999999",linetype="dotted")+theme(plot.title = element_text(hjust = 0.5),title=element_text(face="bold",size=15,colour="black"),axis.title=element_text(face="bold",size=13,colour="black"),axis.text.x=element_text(face="bold",size=12,colour="black"),axis.text.y=element_text(face="bold",size=12,colour="black"),legend.text=element_text(face="bold",size=13,colour="black"))

ggsave("diff_gene_scatter.pdf", width=6, height=6)


ggplot(datam,aes(logFC,-log10(FDR),colour=type))+            geom_point(stat="identity",size=1.2)+theme(legend.title=element_blank())+scale_color_manual(values =c("Down"='blue',"No"='grey',"Up"='orange'))+
            labs(x="Log2 (FC)",y="-Lg10 (FDR)",title=paste(g2,' VS ',g1,sep=""))+coord_cartesian(xlim=c(-12,12),ylim=c(0,15))+

            geom_hline(aes(yintercept=1.3),colour="white",size=1.1)+

            geom_vline(aes(xintercept =-1),colour="white",size=1.1)+geom_vline(aes(xintercept =1),colour="white",size=1.1)+

            theme(axis.title.y = element_text(vjust=-0.1),axis.title.x = element_text( vjust=-0.6),title = element_text( vjust=0.8))+theme(plot.title = element_text(hjust = 0.5),title=element_text(face="bold",size=15,colour="black"),axis.title=element_text(face="bold",size=13,colour="black"),axis.text.x=element_text(face="bold",size=10,colour="black"),axis.text.y=element_text(face="bold",size=10,colour="black"),legend.text=element_text(face="bold",size=12,colour="black"))
ggsave("diff_gene_volcano.pdf", width=7, height=6)

2、将前面准备的三个文件和代码放到同一个文件夹,如果自己的文件名跟前面列的文件名不一致需要先改成一样。

3、代码运行

方法一:RStudio直接运行整个edgeR.R文件夹

方法二:打开DOS运行窗口或者linux服务器窗口,运行命令

Rscript edgeR.R

三、结果展示

1、差异分析结果文件:

image

注:文件夹里会生成2个结果文件,一个是所有基因的差异分析结果,一个是按FDR<0.05 & FC 2倍以上筛选的显著差异基因文件。

1、差异分析散点图

image

2、差异分析火山图

image

怎么样,是不是突然觉得原来数据分析可以这么简单!!!

今天的分享就到此吧,下次继续。

image

相关文章

  • 一行命令完成RNAseq差异分析+火山图+散点图

    今天来给大家分享的是:怎么一行命令完成RNAseq数据差异分析+火山图+散点图。 一、准备3个文件: 1、基因表达...

  • 一行命令完成RNAseq数据标记重要基因

    前面介绍了怎么一行命令完成RNAseq差异分析加作图,那如果我们已经有自己重点关注的基因,并且想把这些基因在差异结...

  • 火山图

    在分析RNAseq和microarray数据的差异基因的时候,常常用到火山图,需要的数据是包含Fold chang...

  • 2020-04-08 R学习3

    散点图 1.散点图简介 散点图还包括火山图、曼哈顿图等,扩增还有气泡图。 2.散点图绘制 1.plot常用参数 举...

  • 差异分析火山图

  • RNA-SEQ(四):火山图

    题目:DEseq2差异分析得到的差异基因做火山图。 目的:火山图可反映总体基因的表达情况,通过不同的颜色醒目的展示...

  • ggplot2火山图展示RNAseq差异表达分析结果

    结果图 完整代码 欢迎大家关注我的公众号小明的数据分析笔记本 需要示例数据的可以给我的公众号留言哈! ggpubr...

  • 11-28-1代码流程

    03 PCA和热图 04差异分析、增加探针名列,探针ID转换 05 火山图和热图

  • ggplot2优雅的绘制火山图

    关于火山图,绘制的教程有很多也有不少专门绘制火山图的包,说到底火山图无非就是散点图的变形,本节来介绍如何通过ggp...

  • **ggpotl2**绘制火山图带基因名字

    关于火山图,绘制的教程有很多也有不少专门绘制火山图的包,说到底火山图无非就是散点图的变形,本节来介绍如何通过ggp...

网友评论

    本文标题:一行命令完成RNAseq差异分析+火山图+散点图

    本文链接:https://www.haomeiwen.com/subject/zorzrktx.html